scholarly journals Магнитоиндуцированныe атомные переходы D-=SUB=-2-=/SUB=--линии калия

2019 ◽  
Vol 127 (9) ◽  
pp. 389
Author(s):  
А. Саргсян ◽  
E. Klinger ◽  
C. Leroy ◽  
Т.А. Вартанян ◽  
Д. Саркисян

For the first time, magnetically induced (MI) transitions of the D2 line of the 39K atom in an external magnetic field of 10–600G using circularly polarized radiation σ + and σ – have been investigated. According to the selection rules in a zero magnetic field, transitions between sublevels of the ground and excited levels of the hyperfine structure with Fe - Fg = delta F = ± 2 are prohibited, while in the magnetic field there is a giant increase in their probabilities. For MI transitions, Fg = 1-> Fe = 3(delta F = +2) the highest probability is achieved when using σ+ radiation, and for Fg = 2->Fe = 0 the highest probability is achieved when using σ-  radiation. For the atomic transitions spectral separation the process of selective reflection of laser radiation from nanocell, filled with potassium atoms is used. This which allowed us to study the behavior of the MI transitions. The experiment well consistent with the theory.

2016 ◽  
Author(s):  
Richard Larsson ◽  
Mathias Milz ◽  
Patrick Eriksson ◽  
Jana Mendrok ◽  
Yasuko Kasai ◽  
...  

Abstract. A Mars-orbiting sub-millimeter sensor can be used to retrieve the magnetic field at low altitudes over large areas of significant planetary crustal magnetism of the surface of Mars from measurements of circularly polarized radiation emitted by the 368 GHz ground-state molecular oxygen absorption line. We design a full retrieval system for one example orbit to show the expected accuracies on the magnetic field components that one realization of such a Mars satellite mission could achieve. We find that the two horizontal components of the magnetic field can be measured at about 200 nT accuracy, globally, with a vertical resolution of about 4 km from about 6 km up to 70 km in tangent altitude. The method and some of its potential pitfalls are described and discussed.


2017 ◽  
Vol 6 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Richard Larsson ◽  
Mathias Milz ◽  
Patrick Eriksson ◽  
Jana Mendrok ◽  
Yasuko Kasai ◽  
...  

Abstract. A Mars-orbiting sub-millimeter sensor can be used to retrieve the magnetic field at low altitudes over large areas of significant planetary crustal magnetism of the surface of Mars from measurements of circularly polarized radiation emitted by the 368 GHz ground-state molecular oxygen absorption line. We design a full retrieval system for one example orbit to show the expected accuracies on the magnetic field components that one realization of such a Mars satellite mission could achieve. For one set of measurements around a tangent profile, we find that the two horizontal components of the magnetic field can be measured at about 200 nT error with a vertical resolution of around 4 km from 6 up to 70 km in tangent altitude. The error is similar regardless of the true strength of the magnetic field, and it can be reduced by repeated measurements over the same area. The method and some of its potential pitfalls are described and discussed.


2007 ◽  
Vol 21 (08n09) ◽  
pp. 1497-1501 ◽  
Author(s):  
S. A. MIKHAILOV ◽  
N. A. SAVOSTIANOVA

Microwave response of a two-dimensional (2D) electron stripe, supplied by two semi-infinite side contacts, is theoretically studied taking into account retardation and radiative effects. Absorption spectra of the stripe are calculated as a function of the microwave frequency ω, magnetic field B, parameters of the 2D electron gas and of the contacts. It is shown that the contacts substantially modify the position, the linewidth and the strength of the absorption resonances, leading for instance to the inversion of the ab-sorption maxima of the right and left circularly polarized radiation in magnetic fields.


1998 ◽  
Vol 164 ◽  
pp. 371-372
Author(s):  
J.-F. Desmurs ◽  
A. Baudry

AbstractWe have used 3 antennas of the EVN to observe in 6 star-forming regions simultaneously, and for the first time, the 2 main lines of the J=5/2 state of OH with right and left circularly polarized feeds. Maser features and Zeeman pairs are identified by searching for emission over adjacent channels, and adjacent positions (within one synthesized beam) in both polarizations after we had mapped and used one selected simple channel as a reference. The magnetic field strength is thus estimated from the Zeeman pairs identified in our OH maps. We briefly present results obtained for W3(OH), ON1, and W51.


1998 ◽  
Vol 11 (2) ◽  
pp. 679-681
Author(s):  
M. Landolfi

The observational quantities commonly used to study the magnetic field of CP stars – the mean field modulus and the mean longitudinal field, as well as the ‘mean asymmetry of the longitudinal field’ and the ‘mean quadratic field’ recently introduced by Mathys (1995a,b) – are based either on the Stokes parameter / or on the Stokes parameter V. However, a complete description of polarized radiation requires the knowledge of the full Stokes vector: in other words, we should expect that useful information is also contained in linear polarization (the Stokes parameters Q and U); or rather we should expect the information contained in (Q, U) and in V to be complementary, since linear and circular polarization are basically related to the transverse and the longitudinal component of the magnetic field, respectively.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Matteo Baggioli ◽  
Sebastian Grieninger ◽  
Li Li

Abstract We perform a detailed analysis of a large class of effective holographic models with broken translations at finite charge density and magnetic field. We exhaustively discuss the dispersion relations of the hydrodynamic modes at zero magnetic field and successfully match them to the predictions from charged hydrodynamics. At finite magnetic field, we identify the presence of an expected type-B Goldstone boson Re[ω] ∼ k2, known as magnetophonon and its gapped partner — the magnetoplasmon. We discuss their properties in relation to the effective field theory and hydrodynamics expectations. Finally, we compute the optical conductivities and the quasinormal modes at finite magnetic field. We observe that the pinning frequency of the magneto-resonance peak increases with the magnetic field, in agreement with experimental data on certain 2D materials, revealing the quantum nature of the holographic pinning mechanism.


Sign in / Sign up

Export Citation Format

Share Document