scholarly journals Конвективный теплообмен во вращающемся полом цилиндре с торцевой стенкой

Author(s):  
В.А. Архипов ◽  
О.В. Матвиенко ◽  
А.С. Жуков ◽  
Н.Н. Золоторёв

The method and results of calculating the flow field and convective heat transfer in a hollow cylinder with end wall rotating around the axis of symmetry with varying angular velocity and height of the cylinder are presented

2020 ◽  
Vol 46 (7) ◽  
pp. 703-706
Author(s):  
V. A. Arkhipov ◽  
O. V. Matvienko ◽  
A. S. Zhukov ◽  
N. N. Zolotorev

Author(s):  
Ribhu Bhatia ◽  
Sambit Supriya Dash ◽  
Vinayak Malhotra

Abstract Systematic experimentation was carried out on forced convection heat transfer apparatus under varying non-linear flow conditions to understand the energy transfer as heat, with the purpose of enhancing performance of numerous engineering applications. Plate orientations, types of enclosures (solid, meshed, perforated), flow velocity variations etc. are taken as governing parameters to effect convective heat transfer phenomenon which is perceived as deviations in value of heat transfer coefficient. RV zonal system is utilized to simplify the fundamental understanding of heat transfer coefficient variation with surface orientation under varying flow field. The objectives of this work are as follows: 1) To establish relative effectiveness of forced convective heat transfer under varying flow field. 2) To investigate the implications of varying shapes and sizes of perforations on confined forced convective heat transfer. To understand the controlling mechanism and role of key controlling parameters.


2019 ◽  
Vol 11 (15) ◽  
pp. 4231
Author(s):  
Wenzhou Zhong ◽  
Tong Zhang ◽  
Tetsuro Tamura

The global background of energy shortages and climate deterioration demands bioclimatic sustainable buildings. Vernacular architecture can provide a useful resource of passive strategies and techniques for creating inner comfort conditions with minimum heating, ventilation, and air conditioning (HVAC) assistance. The identification and verification of such knowledge are essential for climate responsive or energy passive building design. Among the methods, computational fluid dynamics (CFD) is a useful tool for simulating convective heat transfer of vernacular architecture and predicting the convective heat transfer coefficient (CHTC) and flow field. Geometric complexity and diversity of building samples are crucial in the development of an effective simulation methodology in terms of computational cost and accuracy. Therefore, this paper presents high-resolution 3D steady Reynolds-averaged Navier–Stokes (RANS) CFD simulations of convective heat transfer on Japanese vernacular architecture, namely, “machiya.” A CFD validation study on the CHTC is performed based on wind-tunnel experiments on a cube heated by constant heat flux and placed in a turbulent channel flow with a Reynolds number of 3.3 × 104. Three steady RANS models and two boundary layer modeling approaches are compared and discussed. Results show that the SST k-ω model applied with low Reynolds number modeling approach is suitable for CHTC simulations on a simplified building model. The RNG k-ε model applied with wall functions is an appropriate choice for simulating flow field of a complicated building model. Overall, this study develops a methodology involving RANS model selection, boundary layer modeling, and target model fitting to predict the convective heat transfer on vernacular architecture.


Author(s):  
Christian Helcig ◽  
Stefan aus der Wiesche

The understanding of the heat transfer and flow field behavior of rotating systems is essential from a fundamental point of view and for turbo machinery design. The majority of the publications considers enclosed rotating disk systems and only little is known about the convective heat transfer of free rotating disk systems in a forced flow. In this paper, a free rotating disk system, with particular look on the angle of incidence was investigated. The convective heat transfer from a rotating disk depends at least on three characteristic variables, namely the crossflow, rotational Reynolds numbers and the angle of incidence which are determining the mean Nusselt number. A clear study of the symmetry behavior of the flow field was conducted based on the measurement of the convective heat transfer coefficients. The angle of incidence was scanned with high angular resolution over the entire range between the both extreme cases of a perpendicular disk and a disk in a parallel forced flow. A large number of crossflow and rotational Reynolds numbers were covered by the experiments, too. Based on the experimental and theoretical results, a discussion of the different phenomena and heat transfer regimes is given in this paper.


2021 ◽  
Author(s):  
Michael. D Atkins ◽  
F.W. Kienhofer ◽  
Tian Jian Lu ◽  
Se-Myong Chang ◽  
Tongbeum Kim

Abstract This study presents, for the first time, distributions of local internal temperature and convective heat transfer in a rotating radial vane brake disc and explains mechanisms in conjunction with secondary flows and flow separation within its ventilated coolant passages. In particular, variations of radial, circumferential (vane-to-vane) and axial (inboard-to-outboard) heat transfer on internal end-wall surfaces, and their alteration due to varying number of radial vanes and rotating speed are experimentally detailed. It has been demonstrated that conventional ventilated radial brake discs where the air inflow is drawn from the inboard face are likely to suffer substantial axial variations of temperature and heat transfer between the inboard and outboard discs, which possibly exacerbates thermal distortion (i.e., coning). Further, for a typical number of vanes (i.e., 36 vanes) used on automobiles, internal thermal distributions are highly non-uniform. However, the thermal end-wall uniformity improves considerably as the number of vanes is increased to say 72 vanes. Specifically, as the number of vanes is increased, secondary flow mixing enhances overall convective heat transfer and improves thermal uniformity. In contrast, separation causes large end-wall thermal non-uniformities in radial and circumferential distributions between the pressure side and the suction side of radial vanes. This effect nonetheless also decreases as the number of vanes is increased.


Author(s):  
Yuxing Bai ◽  
Fanyu Kong ◽  
Bin Xia ◽  
Yingying Liu

In order to meet the requirement of coal mine flooding emergency rescue, a high power, high head and small volume high-speed wet submersible pump is designed. The high speed rescue pump applies the wet motor and pump integrated structure to achieve the best effect . When high speed rescue pump works, the temperature rise of the motor is high, which may cause the damage of the whole unit if the heat which produced by motor can not be taken away fully. The design of the cooling circuit is critical for the performance of the high speed rescue pump. This paper gives two design methods of the cooling circuit of high speed rescue pump. The design performance parameters: Capacity Q = 200m3/h, Head H = 50m, Rotate speed n = 6000r/min, Power P = 600kW. Two cooling circuits contains the normal and reverse one, which are based on theoretical deduction, numerical simulation and experimental verification. First and foremost, two theoretical models of cooling circuit are established by the theory of convective heat transfer .The heat balance and distribution are calculated by theoretical derivation. Then, both three-dimensional models of the circuit are built by CREO and simulated by ANSYS. The method of flow-heat coupling is used to simulate the whole inner flow field of the high speed rescue pump at different running conditions by considering the transformation of thermal performance parameter of cryogenic fluid caused by temperature change. In the simulation ,the information , such as temperature , flow field, pressure distribution of the whole cooling circuit together with temperature and velocity in the gas gap where temperature changed greatly, the convective heat transfer between fluid and motor ,and the flow rate of the cooling fluid are also gained. The analysis results show that: from the comparison of the pressure distribution of the two cooling forms, under the same inlet and outlet liquid condition ,the minimum and maximum pressure value of the reverse circuit are much higher than the corresponding value ,which means the reverse cooling method is better than the normal method as the aspect of cavitation performance. The temperature rise of reverse cooling circuit with the value 1.5K is smaller than the value of the normal cooling circuit. As the key part of the cooling circuit, the motor gas gap has a significant influence on the performance of the circuit. The velocity and temperature distribution is given to study the law of the flow and thermal field in the gap which can supply an intuitive understanding of the key part. At last, an experiment of a model pump is carried out on the test table validated the reliability of the reverse cooling circuit. It can be also concluded that the cooling circuit can satisfy with mode demand of the working condition of the high speed rescue pump.


Author(s):  
Suhyeon Park ◽  
David Gomez-Ramirez ◽  
Siddhartha Gadiraju ◽  
Sandeep Kedukodi ◽  
Srinath Ekkad ◽  
...  

Designing gas turbine combustors requires accurate measurement and prediction of the violent, high-temperature environment in reacting flow. One important factor in combustor design is the heat load on the inner surface of the combustor liner during combustion. To properly analyze the heat load, the mechanisms of thermal energy transfer must be investigated. Of these, the convective heat transfer has not been fully characterized, representing an important challenge in the field of combustor research. The flow field is closely related to the combustion dynamics from the swirling flame in modern burners, and has a direct impact on the convective heat transfer. Most of the flow field measurements reported in the literature have relied on custom research nozzles. However, the development of modern low emission, lean-premixed combustors requires experimental results from realistic industrial fuel nozzles. This paper experimentally investigates the effects of combustor operating conditions on the reacting flow in an optical single can combustor. The swirling flow was generated by an industrial lean pre-mixed, axial swirl fuel nozzle manufactured by Solar Turbines Incorporated. Planar particle image velocimetry (PIV) data were acquired and analyzed to understand the characteristics of the flow field. Experiments were conducted at Reynolds numbers ranging between 50000 and 110000 (with respect to the nozzle diameter, DN); equivalence ratios between 0.55 and 0.78; and pilot fuel split ratios of 0 to 6%. Characterizing the impingement location on the liner, and the turbulent kinetic energy (TKE) distribution were a fundamental part of the investigation. Self-similar characteristics were observed at reacting conditions. Jet impingement locations on the liner were at x ≈ 1.16 DN for seven different reacting cases, and it was observed that the impingement location was not significantly affected by the combustion parameters studied. However, non-reacting flow was significantly different in flame structure and impingement locations. Combustor liner wall temperature distributions were measured in reacting condition with an infrared camera for a single case. The temperature profile was explained qualitatively with the flow features measured with PIV. Peak wall temperature close to impingement location on the liner wall reached about 900 K, and peak heat flux was measured as ≈ 23 kW/m2 at x ≈ 2.3 DN.


Sign in / Sign up

Export Citation Format

Share Document