scholarly journals The Reconnecting the Hand and Arm with Brain (ReHAB) Commentary on “An Integrated Brain-Machine Interface Platform With Thousands of Channels”

10.2196/16339 ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. e16339 ◽  
Author(s):  
Robert F Kirsch ◽  
A Bolu Ajiboye ◽  
Jonathan P Miller

Intracortical brain-machine interfaces are a promising technology for allowing people with chronic and severe neurological disorders that resulted in loss of function to potentially regain those functions through neuroprosthetic devices. The penetrating microelectrode arrays used in almost all previous studies of intracortical brain-machine interfaces in people had a limited recording life (potentially due to issues with long-term biocompatibility), as well as a limited number of recording electrodes with limited distribution in the brain. Significant advances are required in this array interface to deal with the issues of long-term biocompatibility and lack of distributed recordings. The Musk and Neuralink manuscript proposes a novel and potentially disruptive approach to advancing the brain-electrode interface technology, with the potential of addressing many of these hurdles. Our commentary addresses the potential advantages of the proposed approach, as well as the remaining challenges to be addressed.

2019 ◽  
Author(s):  
Robert F Kirsch ◽  
A Bolu Ajiboye ◽  
Jonathan P Miller

UNSTRUCTURED Intracortical brain-machine interfaces are a promising technology for allowing people with chronic and severe neurological disorders that resulted in loss of function to potentially regain those functions through neuroprosthetic devices. The penetrating microelectrode arrays used in almost all previous studies of intracortical brain-machine interfaces in people had a limited recording life (potentially due to issues with long-term biocompatibility), as well as a limited number of recording electrodes with limited distribution in the brain. Significant advances are required in this array interface to deal with the issues of long-term biocompatibility and lack of distributed recordings. The Musk and Neuralink manuscript proposes a novel and potentially disruptive approach to advancing the brain-electrode interface technology, with the potential of addressing many of these hurdles. Our commentary addresses the potential advantages of the proposed approach, as well as the remaining challenges to be addressed.


2018 ◽  
Author(s):  
Marc D. Ferro ◽  
Christopher M. Proctor ◽  
Alexander Gonzalez ◽  
Eric Zhao ◽  
Andrea Slezia ◽  
...  

AbstractMinimally invasive electrodes of cellular scale that approach a bio-integrative level of neural recording could enable the development of scalable brain machine interfaces that stably interface with the same neural populations over long period of time.In this paper, we designed and created NeuroRoots, a bio-mimetic multi-channel implant sharing similar dimension (10µm wide, 1.5µm thick), mechanical flexibility and spatial distribution as axon bundles in the brain. A simple approach of delivery is reported based on the assembly and controllable immobilization of the electrode onto a 35µm microwire shuttle by using capillarity and surface-tension in aqueous solution. Once implanted into targeted regions of the brain, the microwire was retracted leaving NeuroRoots in the biological tissue with minimal surgical footprint and perturbation of existing neural architectures within the tissue. NeuroRoots was implanted using a platform compatible with commercially available electrophysiology rigs and with measurements of interests in behavioral experiments in adult rats freely moving into maze. We demonstrated that NeuroRoots electrodes reliably detected action potentials for at least 7 weeks and the signal amplitude and shape remained relatively constant during long-term implantation.This research represents a step forward in the direction of developing the next generation of seamless brain-machine interface to study and modulate the activities of specific sub-populations of neurons, and to develop therapies for a plethora of neurological diseases.


Author(s):  
Peter R. Breggin

BACKGROUND: The vaccine/autism controversy has caused vast scientific and public confusion, and it has set back research and education into genuine vaccine-induced neurological disorders. The great strawman of autism has been so emphasized by the vaccine industry that it, and it alone, often appears in authoritative discussions of adverse effects of the MMR and other vaccines. By dismissing the chimerical vaccine/autism controversy, vaccine defenders often dismiss all genuinely neurological aftereffects of the MMR (measles, mumps, and rubella) and other vaccines, including well-documented events, such as relatively rare cases of encephalopathy and encephalitis. OBJECTIVE: This report explains that autism is not a physical or neurological disorder. It is not caused by injury or disease of the brain. It is a developmental disorder that has no physical origins and no physical symptoms. It is extremely unlikely that vaccines are causing autism; but it is extremely likely that they are causing more neurological damage than currently appreciated, some of it resulting in psychosocial disabilities that can be confused with autism and other psychosocial disorders. This confusion between a developmental, psychosocial disorder and a physical neurological disease has played into the hands of interest groups who want to deny that vaccines have any neurological and associated neuropsychiatric effects. METHODS: A review of the scientific literature, textbooks, and related media commentary is integrated with basic clinical knowledge. RESULTS: This report shows how scientific sources have used the vaccine/autism controversy to avoid dealing with genuine neurological risks associated with vaccines and summarizes evidence that vaccines, including the MMR, can cause serious neurological disorders. Manufacturers have been allowed by the US Food and Drug Administration (FDA) to gain vaccine approval without placebo-controlled clinical trials. CONCLUSIONS: The misleading vaccine autism controversy must be set aside in favor of examining actual neurological harms associated with vaccines, including building on existing research that has been ignored. Manufacturers of vaccines must be required to conduct placebo-controlled clinical studies for existing vaccines and for government approval of new vaccines. Many probable or confirmed neurological adverse events occur within a few days or weeks after immunization and could be detected if the trials were sufficiently large. Contrary to current opinion, large, long-term placebo-controlled trials of existing and new vaccines would be relatively easy and safe to conduct.


2009 ◽  
Vol 27 (1) ◽  
pp. E14 ◽  
Author(s):  
Joseph J. Pancrazio

Brain-machine interfaces (BMIs) offer the promise of restoring communication, enabling control of assistive devices, and allowing volitional control of extremities in paralyzed individuals. Working in multidisciplinary teams, neurosurgeons can play an invaluable role in the design, development, and demonstration of novel BMI technology. At the National Institutes of Health, the National Institute of Neurological Disorders and Stroke has a long history of supporting neural engineering and prosthetics efforts including BMI, and these research opportunities continue today. The author provides a brief overview of the opportunities and programs currently available to support BMI projects.


2019 ◽  
Author(s):  
Ben Engelhard ◽  
Ran Darshan ◽  
Nofar Ozeri-Engelhard ◽  
Zvi Israel ◽  
Uri Werner-Reiss ◽  
...  

SummaryDuring sensorimotor learning, neuronal networks change to optimize the associations between action and perception. In this study, we examine how the brain harnesses neuronal patterns that correspond to the current action-perception state during learning. To this end, we recorded activity from motor cortex while monkeys either performed a familiar motor task (movement-state) or learned to control the firing rate of a target neuron using a brain-machine interface (BMI-state). Before learning, monkeys were placed in an observation-state, where no action was required. We found that neuronal patterns during the BMI-state were markedly different from the movement-state patterns. BMI-state patterns were initially similar to those in the observation-state and evolved to produce an increase in the firing rate of the target neuron. The overall activity of the non-target neurons remained similar after learning, suggesting that excitatory-inhibitory balance was maintained. Indeed, a novel neural-level reinforcement-learning network model operating in a chaotic regime of balanced excitation and inhibition predicts our results in detail. We conclude that during BMI learning, the brain can adapt patterns corresponding to the current action-perception state to gain rewards. Moreover, our results show that we can predict activity changes that occur during learning based on the pre-learning activity. This new finding may serve as a key step toward clinical brain-machine interface applications to modify impaired brain activity.


2020 ◽  
Author(s):  
Katrin Mangold ◽  
Jan Mašek ◽  
Jingyan He ◽  
Urban Lendahl ◽  
Elaine Fuchs ◽  
...  

ABSTRACTGene variants associated with disease are efficiently identified with whole genome sequencing or GWAS, but validation in vivo lags behind. We developed NEPTUNE (neural plate targeting by in utero nanoinjection), to rapidly and flexibly introduce gene expression-modifying viruses to the embryonic murine neural plate prior to neurulation, to target the future adult nervous system. Stable integration in >95% of cells in the brain enabled long-term gain- or loss-of-function, and conditional expression was achieved using mini-promotors for cell types of interest. Using NEPTUNE, we silenced Sptbn2, a gene associated with Spinocerebellar ataxia type 5 (SCA5) in humans. Silencing of Sptbn2 induced severe neural tube defects and embryo resorption, suggesting that SPTBN2 in-frame and missense deletions in SCA5 reflect hypomorphic or neomorphic functions, not loss of function. In conclusion, NEPTUNE offers a novel, rapid and cost-effective technique to test gene function in brain development, and can reveal loss of function phenotypes incompatible with life.


Sign in / Sign up

Export Citation Format

Share Document