scholarly journals Predicting Obstetric Disease With Machine Learning Applied to Patient-Reported Data (Preprint)

Author(s):  
Danielle Bradley ◽  
Erin Landau ◽  
Adam Wolfberg ◽  
Alex Baron

BACKGROUND The rise of highly engaging digital health mobile apps over the past few years has created repositories containing billions of patient-reported data points that have the potential to inform clinical research and advance medicine. OBJECTIVE To determine if self-reported data could be leveraged to create machine learning algorithms to predict the presence of, or risk for, obstetric outcomes and related conditions. METHODS More than 10 million women have downloaded Ovia Health’s three mobile apps (Ovia Fertility, Ovia Pregnancy, and Ovia Parenting). Data points logged by app users can include information about menstrual cycle, health history, current health status, nutrition habits, exercise activity, symptoms, or moods. Machine learning algorithms were developed using supervised machine learning methodologies, specifically, Gradient Boosting Decision Tree algorithms. Each algorithm was developed and trained using anywhere from 385 to 5770 features and data from 77,621 to 121,740 app users. RESULTS Algorithms were created to detect the risk of developing preeclampsia, gestational diabetes, and preterm delivery, as well as to identify the presence of existing preeclampsia. The positive predictive value (PPV) was set to 0.75 for all of the models, as this was the threshold where the researchers felt a clinical response—additional screening or testing—would be reasonable, due to the likelihood of a positive outcome. Sensitivity ranged from 24% to 75% across all models. When PPV was adjusted from 0.75 to 0.52, the sensitivity of the preeclampsia prediction algorithm rose from 24% to 85%. When PPV was adjusted from 0.75 to 0.65, the sensitivity of the preeclampsia detection or diagnostic algorithm increased from 37% to 79%. CONCLUSIONS Algorithms based on patient-reported data can predict serious obstetric conditions with accuracy levels sufficient to guide clinical screening by health care providers and health plans. Further research is needed to determine whether such an approach can improve outcomes for at-risk patients and reduce the cost of screening those not at risk. Presenting the results of these models to patients themselves could also provide important insight into otherwise unknown health risks.

2020 ◽  
pp. 003151252096039
Author(s):  
Breanna N. Hart ◽  
Fuh-Cherng Jeng

In this study, we sought to evaluate the efficiencies of multiple machine learning algorithms in detecting neonates’ Frequency Following Responses (FFRs). We recorded continuous brainwaves from 43 American neonates in response to a pre-recorded monosyllable/i/with a rising frequency contour. Recordings were classified into response and no response categories. Six response features were extracted from each recording and served as predictors in FFR identification. Twenty-three supervised machine learning algorithms with mean efficiency values of 86.0%, 94.4%, 97.2%, and 97.5% when 1, 10, 100, and 1000 random iterations were implemented, respectively. These high efficiency values obtained from the neonatal FFRs demonstrate that machine learning algorithms can help assess pitch processing in neonates and can be applied to auditory screening and intervention services for neonates at risk for disorders associated with decreased pitch processing.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

2021 ◽  
Vol 11 (15) ◽  
pp. 6728
Author(s):  
Muhammad Asfand Hafeez ◽  
Muhammad Rashid ◽  
Hassan Tariq ◽  
Zain Ul Abideen ◽  
Saud S. Alotaibi ◽  
...  

Classification and regression are the major applications of machine learning algorithms which are widely used to solve problems in numerous domains of engineering and computer science. Different classifiers based on the optimization of the decision tree have been proposed, however, it is still evolving over time. This paper presents a novel and robust classifier based on a decision tree and tabu search algorithms, respectively. In the aim of improving performance, our proposed algorithm constructs multiple decision trees while employing a tabu search algorithm to consistently monitor the leaf and decision nodes in the corresponding decision trees. Additionally, the used tabu search algorithm is responsible to balance the entropy of the corresponding decision trees. For training the model, we used the clinical data of COVID-19 patients to predict whether a patient is suffering. The experimental results were obtained using our proposed classifier based on the built-in sci-kit learn library in Python. The extensive analysis for the performance comparison was presented using Big O and statistical analysis for conventional supervised machine learning algorithms. Moreover, the performance comparison to optimized state-of-the-art classifiers is also presented. The achieved accuracy of 98%, the required execution time of 55.6 ms and the area under receiver operating characteristic (AUROC) for proposed method of 0.95 reveals that the proposed classifier algorithm is convenient for large datasets.


Author(s):  
Charalambos Kyriakou ◽  
Symeon E. Christodoulou ◽  
Loukas Dimitriou

The paper presents a data-driven framework and related field studies on the use of supervised machine learning and smartphone technology for the spatial condition-assessment mapping of roadway pavement surface anomalies. The study explores the use of data, collected by sensors from a smartphone and a vehicle’s onboard diagnostic device while the vehicle is in movement, for the detection of roadway anomalies. The research proposes a low-cost and automated method to obtain up-to-date information on roadway pavement surface anomalies with the use of smartphone technology, artificial neural networks, robust regression analysis, and supervised machine learning algorithms for multiclass problems. The technology for the suggested system is readily available and accurate and can be utilized in pavement monitoring systems and geographical information system applications. Further, the proposed methodology has been field-tested, exhibiting accuracy levels higher than 90%, and it is currently expanded to include larger datasets and a bigger number of common roadway pavement surface defect types. The proposed system is of practical importance since it provides continuous information on roadway pavement surface conditions, which can be valuable for pavement engineers and public safety.


Sign in / Sign up

Export Citation Format

Share Document