scholarly journals Heart Rate Measures From Wrist-Worn Activity Trackers in a Laboratory and Free-Living Setting: Validation Study (Preprint)

2019 ◽  
Author(s):  
Andre Matthias Müller ◽  
Nan Xin Wang ◽  
Jiali Yao ◽  
Chuen Seng Tan ◽  
Ivan Cherh Chiet Low ◽  
...  

BACKGROUND Wrist-worn activity trackers are popular, and an increasing number of these devices are equipped with heart rate (HR) measurement capabilities. However, the validity of HR data obtained from such trackers has not been thoroughly assessed outside the laboratory setting. OBJECTIVE This study aimed to investigate the validity of HR measures of a high-cost consumer-based tracker (Polar A370) and a low-cost tracker (Tempo HR) in the laboratory and free-living settings. METHODS Participants underwent a laboratory-based cycling protocol while wearing the two trackers and the chest-strapped Polar H10, which acted as criterion. Participants also wore the devices throughout the waking hours of the following day during which they were required to conduct at least one 10-min bout of moderate-to-vigorous physical activity (MVPA) to ensure variability in the HR signal. We extracted 10-second values from all devices and time-matched HR data from the trackers with those from the Polar H10. We calculated intraclass correlation coefficients (ICCs), mean absolute errors, and mean absolute percentage errors (MAPEs) between the criterion and the trackers. We constructed decile plots that compared HR data from Tempo HR and Polar A370 with criterion measures across intensity deciles. We investigated how many HR data points within the MVPA zone (≥64% of maximum HR) were detected by the trackers. RESULTS Of the 57 people screened, 55 joined the study (mean age 30.5 [SD 9.8] years). Tempo HR showed moderate agreement and large errors (laboratory: ICC 0.51 and MAPE 13.00%; free-living: ICC 0.71 and MAPE 10.20%). Polar A370 showed moderate-to-strong agreement and small errors (laboratory: ICC 0.73 and MAPE 6.40%; free-living: ICC 0.83 and MAPE 7.10%). Decile plots indicated increasing differences between Tempo HR and the criterion as HRs increased. Such trend was less pronounced when considering the Polar A370 HR data. Tempo HR identified 62.13% (1872/3013) and 54.27% (5717/10,535) of all MVPA time points in the laboratory phase and free-living phase, respectively. Polar A370 detected 81.09% (2273/2803) and 83.55% (9323/11,158) of all MVPA time points in the laboratory phase and free-living phase, respectively. CONCLUSIONS HR data from the examined wrist-worn trackers were reasonably accurate in both the settings, with the Polar A370 showing stronger agreement with the Polar H10 and smaller errors. Inaccuracies increased with increasing HRs; this was pronounced for Tempo HR.

10.2196/14120 ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. e14120 ◽  
Author(s):  
Andre Matthias Müller ◽  
Nan Xin Wang ◽  
Jiali Yao ◽  
Chuen Seng Tan ◽  
Ivan Cherh Chiet Low ◽  
...  

Background Wrist-worn activity trackers are popular, and an increasing number of these devices are equipped with heart rate (HR) measurement capabilities. However, the validity of HR data obtained from such trackers has not been thoroughly assessed outside the laboratory setting. Objective This study aimed to investigate the validity of HR measures of a high-cost consumer-based tracker (Polar A370) and a low-cost tracker (Tempo HR) in the laboratory and free-living settings. Methods Participants underwent a laboratory-based cycling protocol while wearing the two trackers and the chest-strapped Polar H10, which acted as criterion. Participants also wore the devices throughout the waking hours of the following day during which they were required to conduct at least one 10-min bout of moderate-to-vigorous physical activity (MVPA) to ensure variability in the HR signal. We extracted 10-second values from all devices and time-matched HR data from the trackers with those from the Polar H10. We calculated intraclass correlation coefficients (ICCs), mean absolute errors, and mean absolute percentage errors (MAPEs) between the criterion and the trackers. We constructed decile plots that compared HR data from Tempo HR and Polar A370 with criterion measures across intensity deciles. We investigated how many HR data points within the MVPA zone (≥64% of maximum HR) were detected by the trackers. Results Of the 57 people screened, 55 joined the study (mean age 30.5 [SD 9.8] years). Tempo HR showed moderate agreement and large errors (laboratory: ICC 0.51 and MAPE 13.00%; free-living: ICC 0.71 and MAPE 10.20%). Polar A370 showed moderate-to-strong agreement and small errors (laboratory: ICC 0.73 and MAPE 6.40%; free-living: ICC 0.83 and MAPE 7.10%). Decile plots indicated increasing differences between Tempo HR and the criterion as HRs increased. Such trend was less pronounced when considering the Polar A370 HR data. Tempo HR identified 62.13% (1872/3013) and 54.27% (5717/10,535) of all MVPA time points in the laboratory phase and free-living phase, respectively. Polar A370 detected 81.09% (2273/2803) and 83.55% (9323/11,158) of all MVPA time points in the laboratory phase and free-living phase, respectively. Conclusions HR data from the examined wrist-worn trackers were reasonably accurate in both the settings, with the Polar A370 showing stronger agreement with the Polar H10 and smaller errors. Inaccuracies increased with increasing HRs; this was pronounced for Tempo HR.


2020 ◽  
Author(s):  
Jiangang Sun ◽  
Yang Liu

BACKGROUND An increasing number of wrist-worn wearables are being examined in the context of health care. However, studies of their use during physical education (PE) lessons remain scarce. OBJECTIVE We aim to examine the reliability and validity of the Fizzo Smart Bracelet (Fizzo) in measuring heart rate (HR) in the laboratory and during PE lessons. METHODS In Study 1, 11 healthy subjects (median age 22.0 years, IQR 3.75 years) twice completed a test that involved running on a treadmill at 6 km/h for 12 minutes and 12 km/h for 5 minutes. During the test, participants wore two Fizzo devices, one each on their left and right wrists, to measure their HR. At the same time, the Polar Team2 Pro (Polar), which is worn on the chest, was used as the standard. In Study 2, we went to 10 schools and measured the HR of 24 students (median age 14.0 years, IQR 2.0 years) during PE lessons. During the PE lessons, each student wore a Polar device on their chest and a Fizzo on their right wrist to measure HR data. At the end of the PE lessons, the students and their teachers completed a questionnaire where they assessed the feasibility of Fizzo. The measurements taken by the left wrist Fizzo and the right wrist Fizzo were compared to estimate reliability, while the Fizzo measurements were compared to the Polar measurements to estimate validity. To measure reliability, intraclass correlation coefficients (ICC), mean difference (MD), standard error of measurement (SEM), and mean absolute percentage errors (MAPE) were used. To measure validity, ICC, limits of agreement (LOA), and MAPE were calculated and Bland-Altman plots were constructed. Percentage values were used to estimate the feasibility of Fizzo. RESULTS The Fizzo showed excellent reliability and validity in the laboratory and moderate validity in a PE lesson setting. In Study 1, reliability was excellent (ICC>0.97; MD<0.7; SEM<0.56; MAPE<1.45%). The validity as determined by comparing the left wrist Fizzo and right wrist Fizzo was excellent (ICC>0.98; MAPE<1.85%). Bland-Altman plots showed a strong correlation between left wrist Fizzo measurements (bias=0.48, LOA=–3.94 to 4.89 beats per minute) and right wrist Fizzo measurements (bias=0.56, LOA=–4.60 to 5.72 beats per minute). In Study 2, the validity of the Fizzo was lower compared to that found in Study 1 but still moderate (ICC>0.70; MAPE<9.0%). The Fizzo showed broader LOA in the Bland-Altman plots during the PE lessons (bias=–2.60, LOA=–38.89 to 33.69 beats per minute). Most participants considered the Fizzo very comfortable and easy to put on. All teachers thought the Fizzo was helpful. CONCLUSIONS When participants ran on a treadmill in the laboratory, both left and right wrist Fizzo measurements were accurate. The validity of the Fizzo was lower in PE lessons but still reached a moderate level. The Fizzo is feasible for use during PE lessons.


2016 ◽  
Vol 11 (2) ◽  
pp. 154-158 ◽  
Author(s):  
Lucas A. Pereira ◽  
Andrew A. Flatt ◽  
Rodrigo Ramirez-Campillo ◽  
Irineu Loturco ◽  
Fabio Y. Nakamura

Purpose:To compare the LnRMSSD and the LnRMSSD:RR values obtained during a 5-min stabilization period with the subsequent 5-min criterion period and to determine the time course for LnRMSSD and LnRMSSD:RR stabilization at 1-min analysis in elite team-sport athletes.Participants:35 elite futsal players (23.9 ± 4.5 y, 174.2 ± 4.0 cm, 74.0 ± 7.5 kg, 1576.2 ± 396.3 m in the Yo-Yo test level 1).Methods:The RR-interval recordings were obtained using a portable heart-rate monitor continuously for 10 min in the seated position. The 2 dependent variables analyzed were LnRMSSD and LnRMSSD:RR. To calculate the magnitude of the differences between time periods, effect-size (ES) analysis was conducted. To assess the levels of agreement, intraclass correlation coefficients (ICC) and Bland-Altman plots were used.Results:The LnRMSSD and LnRMSSD:RR values obtained during the stabilization period (0–5 min) presented very large to nearly perfect ICCs with the values obtained during the criterion period (5–10 min), with trivial ESs. In the ultra-short-term analysis (ie, 1-min segments) the data showed slightly less accurate results, but only trivial to small differences with very large to nearly perfect ICCs were found.Conclusion:LnRMSSD and LnRMSSD:RR can be recorded in 5 min without traditional stabilization periods under resting conditions in team-sport athletes. The ultra-short-term analysis (1 min) also revealed acceptable levels of agreement with the criterion.


2021 ◽  
Vol 4 (3) ◽  
pp. 257-265
Author(s):  
Golnoush Mehrabani ◽  
Douglas P. Gross ◽  
Saeideh Aminian ◽  
Patricia J. Manns

Walking is the most common and preferred way for people with multiple sclerosis (MS) to be active. Consumer-grade wearable activity monitors may be used as a tool to assist people with MS to track their walking by counting the number of steps. The authors evaluated the validity of Fitbit One activity tracker in individuals with MS by comparing step counts measured over a 7-day period against ActivPAL3TM (AP). Twenty-five ambulatory adults with MS with an average age 51.7 (10.2) years and gait speed 0.98 (0.47) m/s, median Expanded Disability Status Scale 5.5 (2.5–6.5), and 15 years post-MS diagnosis wore Fitbit One (using both waist and ankle placement) and AP for 7 consecutive days. Validity of Fitbit One for measuring step counts against AP was assessed using intraclass correlation coefficients (ICCs), Bland–Altman plots, and t tests. Regardless of wearing location (waist or ankle), there was good agreement between steps recorded by Fitbit One and AP (ICC: .86 [.82, .90]). The ankle-worn Fitbit measured steps more accurately (ICC: .91 [.81, .95]) than the waist-worn Fitbit (ICC: .81 [.62, .85]) especially in individuals (n = 12) who walked slowly (gait speed = 0.74 m/s). Fitbit One as a user-friendly, inexpensive, consumer-grade activity tracker can accurately record steps in persons with MS in a free-living environment.


2021 ◽  
Vol 11 (5) ◽  
pp. 68
Author(s):  
Jacquelin M. Killian ◽  
Rachel M. Radin ◽  
Cubby L. Gardner ◽  
Lalon Kasuske ◽  
Kylee Bashirelahi ◽  
...  

Using healthy adult participants, seven measures of heart rate variability were obtained simultaneously from four devices in five behavioral conditions. Two devices were ECG-based and two utilized photoplethysmography. The 140 numerical values (measure, condition, device) are presented. The comparative operational reliability of the four devices was assessed, and it was found that the two ECG-base devices were more reliable than the photoplethysmographic devices. The interchangeability of devices was assessed by determining the between-device Limits of Agreement. Intraclass correlation coefficients were determined and used to calculate the standard error of measurement and the Minimal Detectable Difference. The Minimal Detectable Difference, MDD, quantifies the smallest statistically significant change in a measure and is therefore critical when HRV measures are used longitudinally to assess treatment response or disease progression.


10.2196/17699 ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. e17699
Author(s):  
Jiangang Sun ◽  
Yang Liu

Background An increasing number of wrist-worn wearables are being examined in the context of health care. However, studies of their use during physical education (PE) lessons remain scarce. Objective We aim to examine the reliability and validity of the Fizzo Smart Bracelet (Fizzo) in measuring heart rate (HR) in the laboratory and during PE lessons. Methods In Study 1, 11 healthy subjects (median age 22.0 years, IQR 3.75 years) twice completed a test that involved running on a treadmill at 6 km/h for 12 minutes and 12 km/h for 5 minutes. During the test, participants wore two Fizzo devices, one each on their left and right wrists, to measure their HR. At the same time, the Polar Team2 Pro (Polar), which is worn on the chest, was used as the standard. In Study 2, we went to 10 schools and measured the HR of 24 students (median age 14.0 years, IQR 2.0 years) during PE lessons. During the PE lessons, each student wore a Polar device on their chest and a Fizzo on their right wrist to measure HR data. At the end of the PE lessons, the students and their teachers completed a questionnaire where they assessed the feasibility of Fizzo. The measurements taken by the left wrist Fizzo and the right wrist Fizzo were compared to estimate reliability, while the Fizzo measurements were compared to the Polar measurements to estimate validity. To measure reliability, intraclass correlation coefficients (ICC), mean difference (MD), standard error of measurement (SEM), and mean absolute percentage errors (MAPE) were used. To measure validity, ICC, limits of agreement (LOA), and MAPE were calculated and Bland-Altman plots were constructed. Percentage values were used to estimate the feasibility of Fizzo. Results The Fizzo showed excellent reliability and validity in the laboratory and moderate validity in a PE lesson setting. In Study 1, reliability was excellent (ICC>0.97; MD<0.7; SEM<0.56; MAPE<1.45%). The validity as determined by comparing the left wrist Fizzo and right wrist Fizzo was excellent (ICC>0.98; MAPE<1.85%). Bland-Altman plots showed a strong correlation between left wrist Fizzo measurements (bias=0.48, LOA=–3.94 to 4.89 beats per minute) and right wrist Fizzo measurements (bias=0.56, LOA=–4.60 to 5.72 beats per minute). In Study 2, the validity of the Fizzo was lower compared to that found in Study 1 but still moderate (ICC>0.70; MAPE<9.0%). The Fizzo showed broader LOA in the Bland-Altman plots during the PE lessons (bias=–2.60, LOA=–38.89 to 33.69 beats per minute). Most participants considered the Fizzo very comfortable and easy to put on. All teachers thought the Fizzo was helpful. Conclusions When participants ran on a treadmill in the laboratory, both left and right wrist Fizzo measurements were accurate. The validity of the Fizzo was lower in PE lessons but still reached a moderate level. The Fizzo is feasible for use during PE lessons.


2020 ◽  
Vol 29 (8) ◽  
pp. 1218-1221
Author(s):  
Matheus Lima Oliveira ◽  
Isabela Christina Ferreira ◽  
Kariny Realino Ferreira ◽  
Gabriela Silveira-Nunes ◽  
Michelle Almeida Barbosa ◽  
...  

Context: Strength assessment is essential to prescribe exercise in sports and rehabilitation. Low-cost valid equipment may allow continuous monitoring of training. Objective: To examine the validity of a very low-cost hanging scale by comparing differences in the measures of peak force to a laboratory grade load cell during shoulder abduction, flexion, extension, and internal and external rotations. Design: Analytical study. Participants: Thirty-two healthy subjects (18 women, age 26 [10] y, height 172 [8] cm, mass 69 [13] kg, body mass index 23 [4] kg/m2). Main Outcome Measures: The dependent variable was the maximal peak force (in kilogram-force). The independent variable was the instrument (laboratory grade load cell and hanging scale). Results: No differences were observed while comparing the results. The intraclass correlation coefficients1,1 ranged from .96 to .99, showing excellent results. The Cronbach alpha test also returned >.99 for all comparisons. The SEM ranged from 0.02 to 0.04 kgf, with an averaged SD from 0.24 to 0.38 kgf. The correlation was classified as high for all tested movements (r > .99; P < .001), with excellent adjusted coefficients of determination (.96 < r2 < .99). Bland–Altman results showed high levels of agreement with bias ranging from 0.27 to 0.48. Conclusions: Hanging scale provides valid measures of isometric strength with similar output measures as laboratory grade load cell.


2018 ◽  
Vol 42 (5) ◽  
pp. 518-526 ◽  
Author(s):  
Elisa S Arch ◽  
Jaclyn M Sions ◽  
John Horne ◽  
Barry A Bodt

Background: Step counts, obtained via activity monitors, provide insight into activity level in the free-living environment. Accuracy assessments of activity monitors are limited among individuals with lower-limb amputations. Objectives: (1) To evaluate the step count accuracy of both monitors during forward-linear and complex walking and (2) compare monitor step counts in the free-living environment. Study design: Cross-sectional study. Methods: Adult prosthetic users with a unilateral transtibial amputation were equipped with StepWatch and FitBit One™. Participants completed an in-clinic evaluation to evaluate each monitor’s step count accuracy during forward linear and complex walking followed by a 7-day step count evaluation in the free-living environment. Results: Both monitors showed excellent accuracy during forward, linear walking (intraclass correlation coefficients = 0.97–0.99, 95% confidence interval = 0.93–0.99; percentage error = 4.3%–6.2%). During complex walking, percentage errors were higher (13.0%–15.5%), intraclass correlation coefficients were 0.88–0.90, and 95% confidence intervals were 0.69–0.96. In the free-living environment, the absolute percentage difference between monitor counts was 25.4%, but the counts had a nearly perfect linear relationship. Conclusion: Both monitors accurately counted steps during forward linear walking. StepWatch appears to be more accurate than FitBit during complex walking but a larger sample size may confirm these findings. FitBit consistently counted fewer steps than StepWatch during free-living walking. Clinical relevance The StepWatch and FitBit are acceptable tools for assessing forward, linear walking for individuals with transtibial amputation. Given the results’ consistenty in the free-living enviorment, both tools may ultimiately be able to be used to count steps in the real world, but more research is needed to confirm these findings.


2013 ◽  
Vol 8 (4) ◽  
pp. 379-383 ◽  
Author(s):  
Matthew W. Driller ◽  
Christos K. Argus ◽  
Cecilia M. Shing

Purpose:To determine the reliability of a 30-s sprint cycle test on the Wattbike cycle ergometer.Methods:Over 3 consecutive weeks, 11 highly trained cyclists (mean ± SD; age 31 ± 6 y, mass 74.6 ± 10.6 kg, height 180.5 ± 8.1cm) completed four 30-s maximal sprints on a Wattbike ergometer after a standardized warmup. The sprint test implemented a “rolling start” that consisted of a 60-s preload (at an intensity of 4.5 W/kg) before the 30-s maximal sprint. Variables determined across the duration of the sprint were peak power (Wpeak), mean power (Wmean), W/kg, mean cadence (rpm), maximum heart rate (n = 10), and postexercise blood lactate.Results:The average intraclass correlation coefficients between trials (2v1, 3v2, 4v3, 4v1) were Wpeak .97 (90%CI .94–.99), Wmean .99 (90%CI .97–1.00), W/kg .96 (90%CI .91–.98), mean cadence .96 (90%CI .92–.99), maximum heart rate .99 (90%CI .97–.99), and postexercise blood lactate .94 (90%CI .87–.98). The average typical error of measurement (expressed as a CV% and absolute value between trials—2v1, 3v2, 4v3, 4v1) was Wpeak 4.9%, 52.7 W; Wmean 2.4%, 19.2 W; W/kg 2.3%, 0.18 W/kg; mean cadence 1.4%, 1.6 rpm; maximum heart rate 0.9%, 1.6 beats/min; and postexercise blood lactate 4.6%, 0.48 mmol/L.Conclusion:A 30-s sprint test on the Wattbike cycle ergometer is highly reproducible in trained cyclists.


2013 ◽  
Vol 83 (6) ◽  
pp. 1049-1058 ◽  
Author(s):  
Liliane de Carvalho Rosas Gomes ◽  
Karla Orfelina Carpio Horta ◽  
Luiz Gonzaga Gandini ◽  
Marcelo Gonçalves ◽  
João Roberto Gonçalves

ABSTRACT Objective: To investigate the relationship between craniofacial measurements obtained from cephalometric radiographs and analogous measurements from profile photographs. Materials and Methods: Lateral cephalograms and standardized facial profile photographs were obtained from a sample of 123 subjects (65 girls, 58 boys; age 7–12 years). Intraclass correlation coefficients (ICCs) were calculated from repeated photographic measurements to evaluate method reliability. Analogous cephalometric and photographic measurements were compared to assess Pearson correlation coefficients. Linear regression analyses were conducted between the measurements that achieved correlation coefficients greater than r  =  0.7. Results: The reliability of the photographic technique was satisfactory. Most measurements showed ICCs above 0.80 and highly significant correlations (P ≤ .001) with cephalometric variables. Among all measurements used, the A'N'B' angle was the most effective in explaining the variability of its analogous cephalometric, mainly for female subjects (r2  =  0.80). The FMA' angle showed the best results for vertical assessment (r2  =  0.65). Conclusions: The photographic method has proven to be a repeatable and reproducible tool provided that a standardized protocol is followed. Therefore, it may be considered a feasible and practical diagnostic alternative, particularly if there is a need for a low-cost and noninvasive method.


Sign in / Sign up

Export Citation Format

Share Document