scholarly journals Visual Fixations and Motion Sensitivity: Protocol for an Exploratory Study (Preprint)

2019 ◽  
Author(s):  
Shikha Chaudhary ◽  
Nicola Saywell ◽  
Arun Kumar ◽  
Denise Taylor

BACKGROUND Motion sensitivity after vestibular disorders is associated with symptoms of nausea, dizziness, and imbalance in busy environments. Dizziness and imbalance are reported in places such as supermarkets and shopping malls which have unstable visual backgrounds; however, the mechanism of motion sensitivity is poorly understood. OBJECTIVE The main aim of this exploratory observational study is to investigate visual fixations and postural sway in response to increasingly complex visual environments in healthy adults and adults with motion sensitivity. METHODS A total of 20 healthy adults and 20 adults with motion sensitivity will be recruited for this study. Visual fixations, postural sway, and body kinematics will be measured with a mobile eye tracker device, force plate, and 3D motion capture system, respectively. Participants will be exposed to experimental tasks requiring visual fixation on letters, projected on a range of backgrounds on a large screen during quiet stance. Descriptive statistics (mean and standard deviation) will be calculated for each of the variables. One-way independent-measures analyses of variance will be performed to investigate the differences between groups for all variables. RESULTS Data collection was started in May 2019 and was completed by February 2020. It was approved by Health and Disability Ethics Committees, Ministry of Health, New Zealand on November 2, 2018 (Ethics ref: 18/CEN/193). We are currently processing the data and will begin data analysis in July 2020. We expect the results to be available for publication by the end of 2020. The trial was funded by the Neurology Special Interest Group, Physiotherapy New Zealand, and the Eisdell Moore Centre in November 2018. CONCLUSIONS This study will provide a detailed investigation of visual fixations in response to increasingly complex visual environments. Investigating characteristics of visual fixations in healthy adults and those with motion sensitivity will provide insight into this disabling condition and may inform the development of new intervention strategies which explicitly cater to the needs of this population. CLINICALTRIAL Australian New Zealand Clinical Trials Registry, ACTRN12619000254190; https://tinyurl.com/yxbn7nks INTERNATIONAL REGISTERED REPORT PRR1-10.2196/16805

10.2196/16805 ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. e16805
Author(s):  
Shikha Chaudhary ◽  
Nicola Saywell ◽  
Arun Kumar ◽  
Denise Taylor

Background Motion sensitivity after vestibular disorders is associated with symptoms of nausea, dizziness, and imbalance in busy environments. Dizziness and imbalance are reported in places such as supermarkets and shopping malls which have unstable visual backgrounds; however, the mechanism of motion sensitivity is poorly understood. Objective The main aim of this exploratory observational study is to investigate visual fixations and postural sway in response to increasingly complex visual environments in healthy adults and adults with motion sensitivity. Methods A total of 20 healthy adults and 20 adults with motion sensitivity will be recruited for this study. Visual fixations, postural sway, and body kinematics will be measured with a mobile eye tracker device, force plate, and 3D motion capture system, respectively. Participants will be exposed to experimental tasks requiring visual fixation on letters, projected on a range of backgrounds on a large screen during quiet stance. Descriptive statistics (mean and standard deviation) will be calculated for each of the variables. One-way independent-measures analyses of variance will be performed to investigate the differences between groups for all variables. Results Data collection was started in May 2019 and was completed by February 2020. It was approved by Health and Disability Ethics Committees, Ministry of Health, New Zealand on November 2, 2018 (Ethics ref: 18/CEN/193). We are currently processing the data and will begin data analysis in July 2020. We expect the results to be available for publication by the end of 2020. The trial was funded by the Neurology Special Interest Group, Physiotherapy New Zealand, and the Eisdell Moore Centre in November 2018. Conclusions This study will provide a detailed investigation of visual fixations in response to increasingly complex visual environments. Investigating characteristics of visual fixations in healthy adults and those with motion sensitivity will provide insight into this disabling condition and may inform the development of new intervention strategies which explicitly cater to the needs of this population. Trial Registration Australian New Zealand Clinical Trials Registry, ACTRN12619000254190; https://tinyurl.com/yxbn7nks International Registered Report Identifier (IRRID) PRR1-10.2196/16805


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5167
Author(s):  
Nicky Baker ◽  
Claire Gough ◽  
Susan J. Gordon

Compared to laboratory equipment inertial sensors are inexpensive and portable, permitting the measurement of postural sway and balance to be conducted in any setting. This systematic review investigated the inter-sensor and test-retest reliability, and concurrent and discriminant validity to measure static and dynamic balance in healthy adults. Medline, PubMed, Embase, Scopus, CINAHL, and Web of Science were searched to January 2021. Nineteen studies met the inclusion criteria. Meta-analysis was possible for reliability studies only and it was found that inertial sensors are reliable to measure static standing eyes open. A synthesis of the included studies shows moderate to good reliability for dynamic balance. Concurrent validity is moderate for both static and dynamic balance. Sensors discriminate old from young adults by amplitude of mediolateral sway, gait velocity, step length, and turn speed. Fallers are discriminated from non-fallers by sensor measures during walking, stepping, and sit to stand. The accuracy of discrimination is unable to be determined conclusively. Using inertial sensors to measure postural sway in healthy adults provides real-time data collected in the natural environment and enables discrimination between fallers and non-fallers. The ability of inertial sensors to identify differences in postural sway components related to altered performance in clinical tests can inform targeted interventions for the prevention of falls and near falls.


2018 ◽  
Vol 28 (4) ◽  
pp. 955-962 ◽  
Author(s):  
Rebecca Mercieca-Bebber ◽  
◽  
Douglas Williams ◽  
Margaret-Ann Tait ◽  
Claudia Rutherford ◽  
...  

2020 ◽  
Vol 29 (2) ◽  
pp. 174-178
Author(s):  
Kelly M. Meiners ◽  
Janice K. Loudon

Purpose/Background: Various methods are available for assessment of static and dynamic postural stability. The primary purpose of this study was to investigate the relationship between dynamic postural stability as measured by the Star Excursion Balance Test (SEBT) and static postural sway assessment as measured by the TechnoBody™ Pro-Kin in female soccer players. A secondary purpose was to determine side-to-side symmetry in this cohort. Methods: A total of 18 female soccer players completed testing on the SEBT and Technobody™ Pro-Kin balance device. Outcome measures were anterior, posterior medial, and posterior lateral reaches from the SEBT and center of pressure in the x- and y-axes as well as SD of movement in the forward/backward and medial/lateral directions from the force plate on left and right legs. Bivariate correlations were determined between the 8 measures. In addition, paired Wilcoxon signed-rank tests were performed to determine similarity between limb scores. Results: All measures on both the SEBT and postural sway assessment were significantly correlated when comparing dominant with nondominant lower-extremities with the exception of SD of movement in both x- and y-axes. When correlating results of the SEBT with postural sway assessment, a significant correlation was found between the SEBT right lower-extremity posterior lateral reach (r = .567, P < .05) and summed SEBT (r = .486, P < .05) and the center of pressure in the y-axis. A significant correlation was also found on the left lower-extremity, with SD of forward/backward movement and SEBT posterior medial reach (r = −.511, P < .05). Conclusions: Dynamic postural tests and static postural tests provide different information to the overall assessment of balance in female soccer players. Relationship between variables differed based on the subject’s lower-extremity dominance.


2020 ◽  
Author(s):  
Eva Ekvall Hansson ◽  
Leif E Dahlberg ◽  
Måns Magnusson ◽  
Anders Beckman

Abstract Background Falls and ensuing fractures are major challenges in our ageing population. The aim of this study was to study if clinical balance measures, function of the inner ear, self-rated health or fracture risk assessed by FRAX ® could predict future admission to hospital because of a fracture among a group of older persons with previous wrist fracture. Methods This was a longitudinal study with a 5-year follow-up. Searches in the local health authority’s patient administrative system (PAS) were performed 5 years after inclusion and baseline measurements were taken. Information was extracted about whether participants had been treated for a fracture or hospitalized other reasons during the 5-year period. Persons, 50 years and above, with previous wrist fracture (n=83). Five different clinical balance measures was assessed, postural sway was assessed by means of a force plate, vestibular asymmetry was assessed with the head- shake test, self-rated health by EuroQol 5 Dimension visual analogue scale and risk of future fracture by the Fracture Risk Assessment Tool (FRAX ® ). Age and body mass index was also used in the risk analysis. Results Age was associated with risk of future fracture, OR 1,06 (95% CI 1,01-1,12). The ability to stand on one leg with eyes open correlated significantly with future fracture (p=0.011) and so did FRAXosteo, however on the limits of significance (p=0.052). Conclusion This follow-up study showed that the one-leg standing time-test was a stronger predictor for future facture within five-years after a wrist fracture than FRAX not including a measure of balance.


2020 ◽  
pp. 003151252094509
Author(s):  
Mark Walsh ◽  
Caroline Church ◽  
Audrey Hoffmeister ◽  
Dean Smith ◽  
Joshua Haworth

Measurements of postural sway are used to assess physiological changes due to therapy or sport training, or to describe group differences based on activity history or disease status. Portable force plates have been widely adopted for this purpose, leading us in this study to validate with linear and nonlinear metrics the posturographic data derived from both a portable plate (Natus) when compared to an in-ground plate (Bertec). Twenty participants stood on each plate for two trials each, with and without a foam perturbation and with and without eyes open on each surface. We calculated measures of path length, range, root mean squares, sample entropy, and correlation dimensions from center of pressure traces on each plate. An intraclass correlation coefficient across trials from each plate in each condition indicated satisfactory overall reliability (ICC consistency), supporting the use of either plate for postural sway research and interventions. Additionally, our results generally supported common validity (ICC absolute agreement), though, the specific degree of similarity differed for each of the tested metrics of postural sway, especially when considering whether or not data was filtered. For situations in which participants cannot visit a laboratory (e.g. performing athletes, community dwelling clinical patients, and virus risk concerns) an in-home portable force plate is a trusted and valuable data collection tool.


2017 ◽  
Vol 1 (S1) ◽  
pp. 26-26
Author(s):  
Haylie Miller ◽  
Nicoleta Bugnariu ◽  
Priscila Caçola ◽  
Rita Patterson

OBJECTIVES/SPECIFIC AIMS: Individuals with autism spectrum disorder (ASD) and developmental coordination disorder (DCD) share overlap in their motor symptom profile and underlying neurology (Sumner, Leonard, & Hill, 2016, JADD). DSM-5 guidelines allow these 2 disorders to be independent or co-occurring (APA, 2013), but common clinical practice does not include systematic assessment to determine the presence or absence of co-occurring DCD in children with ASD, or vice versa. Furthermore, in many cases DCD is managed in a nonspecific manner, with schools making accommodations for a child’s motor challenges without formally assigning a diagnosis of DCD. Thus, somewhat subjective, qualitative judgments are made by clinicians to classify children as DCD, ASD, or ASD+DCD in the absence of a reliable, valid, quantitative measure to distinguish between these profiles. As a first step toward developing such a measure, researchers must tease apart the nuanced differences in the motor symptoms of these 2 developmental disorders using methods that are scalable to clinical and educational settings. These methods must also be developed with consideration for logistical variables such as cost, clinical utility of data output, and ease-of-use if they are to be transferrable to physicians, school nurses, and other community health workers outside of academic laboratory settings. To that end, we conducted 2 complementary studies: 1 in the lab and 1 in the community. METHODS/STUDY POPULATION: In the community-based study, we used an affordable, user-friendly, portable balance testing system to assess postural stability during quiet standing (feet shoulder-width apart) with eyes open for 30 seconds. Data were generated from a single force plate in the balance platform. Potential participants were screened for other medical and neurological conditions that might impact their postural stability, and those with significant comorbidities were excluded. We tested 15 children with a reported diagnosis of ASD, 8 children with suspected or diagnosed DCD who were enrolled in a motor intervention program, and 30 typically-developing (TD) children with no significant developmental history reported. The ASD group ranged in age from 7 to 20, the DCD group ranged from 7 to 10, and the TD group ranged from 7 to 19. In the lab-based study, we again obtained force plate data during quiet standing (feet shoulder-width apart) with eyes open for 30 seconds, in our system that also included full-body motion capture, virtual reality, and mobile eye tracking. (Data from these additional sources are not discussed in this disseminaton, as our current focus is on identifying a simple, scalable metric that can be used to distinguish ASD from DCD.) We tested 10 children with a diagnosis of ASD that was confirmed by the research team, 10 children with a diagnosis of DCD that was confirmed by the research team, and 5 TD children with no significant developmental history reported. The ASD group ranged in age from 7 to 18, the DCD group ranged from 8 to 12, and the TD group ranged from 9 to 18. RESULTS/ANTICIPATED RESULTS: Primary outcome measures in both studies were related to Center of Pressure (CoP), including CoP sway, CoP velocity, and amount of sway relative to the base of support. Data analysis from both studies is ongoing, but preliminary trends suggest that CoP metrics may effectively differentiate between ASD, DCD, and TD. During quiet standing, individuals with DCD exhibited the greatest postural sway. Individuals with ASD followed, having greater instability than the TD group. Differences were also evident in the velocity profiles of postural sway. DISCUSSION/SIGNIFICANCE OF IMPACT: Preliminary findings suggest that CoP offers a means of differentiating between typical and atypical development specifically with respect to motor symptoms. This simple, quantifiable measure may prove a sensitive and specific means of systematically assessing co-occurrence of ASD and DCD in clinical and educational settings, leading to more accurate diagnostic classification and tailored intervention. Future directions include conducting analyses that account for participant age and developmental stage with respect to motor skills, determining whether trends hold in a larger sample, and using advanced statistical methods to determine whether CoP variables have predictive validity in discriminating between classifications of ASD, DCD, ASD+DCD, and TD. Eye-movement data were also obtained during these tasks, and may further aid in understanding the factors contributing to atypical postural control. These 2 studies also yielded methodological findings, namely that the portable force platform carries the benefit of high ease-of-use, low cost, and portability, but also has important drawbacks. Specifically, it is not capable of registering accurate CoP data for participants who weigh <40 lbs, and the error variance for the load cells is greater than that of most nonportable, higher-end plates like those embedded in our laboratory’s platform. As technological advances continue to facilitate development of more portable, higher-resolution systems, these drawbacks may be significantly reduced. Future directions include further assessment of portable, affordable solutions for this type of testing to identify whether higher-resolution options are available, whether this added resolution increases classification accuracy, and how ease-of-use is perceived by clinical and community health workers.


2019 ◽  
Vol 116 (36) ◽  
pp. 17729-17734 ◽  
Author(s):  
Samuel J. Cheyette ◽  
Steven T. Piantadosi

The approximate number system (ANS) has attracted broad interest due to its potential importance in early mathematical development and the fact that it is conserved across species. Models of the ANS and behavioral measures of ANS acuity both assume that quantity estimation is computed rapidly and in parallel across an entire view of the visual scene. We present evidence instead that ANS estimates are largely the product of a serial accumulation mechanism operating across visual fixations. We used an eye-tracker to collect data on participants’ visual fixations while they performed quantity-estimation and -discrimination tasks. We were able to predict participants’ numerical estimates using their visual fixation data: As the number of dots fixated increased, mean estimates also increased, and estimation error decreased. A detailed model-based analysis shows that fixated dots contribute twice as much as peripheral dots to estimated quantities; people do not “double count” multiply fixated dots; and they do not adjust for the proportion of area in the scene that they have fixated. The accumulation mechanism we propose explains reported effects of display time on estimation and earlier findings of a bias to underestimate quantities.


Author(s):  
Elżbieta Piątek ◽  
Michał Kuczyński ◽  
Bożena Ostrowska

Due to balance deficits that accompany adolescent idiopathic scoliosis (AIS), the potential interaction between activities of daily living and active self-correction movements (ASC) on postural control deserves particular attention. Our purpose was to assess the effects of ASC movements with or without a secondary mental task on postural control in twenty-five girls with AIS. It is a quasi-experimental within-subject design with repeated measures ANOVA. They were measured in four 20-s quiet standing trials on a force plate: no task, ASC, Stroop test, and both. Based on the center-of-pressure (COP) recordings, the COP parameters were computed. The ASC alone had no effect on any of the postural sway measures. Stroop test alone decreased COP speed and increased COP entropy. Performing the ASC movements and Stroop test together increased the COP speed and decreased COP entropy as compared to the baseline data. In conclusion, our results indicate that AIS did not interfere with postural control. The effects of the Stroop test accounted for good capacity of subjects with AIS to take advantage of distracting attentional resources from the posture. However, performing both tasks together exhibited some deficits in postural control, which may suggest the need for therapeutic consultation while engaging in more demanding activities.


Vaccine ◽  
2006 ◽  
Vol 24 (9) ◽  
pp. 1395-1400 ◽  
Author(s):  
V THORNTON ◽  
D LENNON ◽  
K RASANATHAN ◽  
J OHALLAHAN ◽  
P OSTER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document