Dynamic and Static Assessment of Single-Leg Postural Control in Female Soccer Players

2020 ◽  
Vol 29 (2) ◽  
pp. 174-178
Author(s):  
Kelly M. Meiners ◽  
Janice K. Loudon

Purpose/Background: Various methods are available for assessment of static and dynamic postural stability. The primary purpose of this study was to investigate the relationship between dynamic postural stability as measured by the Star Excursion Balance Test (SEBT) and static postural sway assessment as measured by the TechnoBody™ Pro-Kin in female soccer players. A secondary purpose was to determine side-to-side symmetry in this cohort. Methods: A total of 18 female soccer players completed testing on the SEBT and Technobody™ Pro-Kin balance device. Outcome measures were anterior, posterior medial, and posterior lateral reaches from the SEBT and center of pressure in the x- and y-axes as well as SD of movement in the forward/backward and medial/lateral directions from the force plate on left and right legs. Bivariate correlations were determined between the 8 measures. In addition, paired Wilcoxon signed-rank tests were performed to determine similarity between limb scores. Results: All measures on both the SEBT and postural sway assessment were significantly correlated when comparing dominant with nondominant lower-extremities with the exception of SD of movement in both x- and y-axes. When correlating results of the SEBT with postural sway assessment, a significant correlation was found between the SEBT right lower-extremity posterior lateral reach (r = .567, P < .05) and summed SEBT (r = .486, P < .05) and the center of pressure in the y-axis. A significant correlation was also found on the left lower-extremity, with SD of forward/backward movement and SEBT posterior medial reach (r = −.511, P < .05). Conclusions: Dynamic postural tests and static postural tests provide different information to the overall assessment of balance in female soccer players. Relationship between variables differed based on the subject’s lower-extremity dominance.

2021 ◽  
Vol 17 (6) ◽  
pp. 418-427
Author(s):  
Yücel Makaracı ◽  
Recep Soslu ◽  
Ömer Özer ◽  
Abdullah Uysal

In sports such as basketball and volleyball, loss of balance due to the inability to maintain body stability and lack of postural control adversely affect athletic performance. Deaf athletes appear to struggle with balance and postural stability problems. The purpose of this study was to examine postural sway values in parallel and single leg stance of Olympic deaf basketball and volleyball players and reveal differences between the branches. Twenty-three male athletes from the Turkish national deaf basketball (n= 11) and volleyball (n= 12) teams participated in the study. After anthropometric measurements, the subjects completed postural sway (PS) tests in parallel/single leg stances with open eyes and closed eyes on a force plate. PS parameters (sway path, velocity, and area) obtained from the device software were used for the statistical analysis. The Mann-Whitney U-test was used to compare differences in PS parameters between basketball and volleyball players, and the alpha value was accepted as 0.05. Volleyball players had significantly better results in parallel stance and dominant leg PS values than basketball players (P<0.05). There was no significant difference between the groups in nondominant leg PS values (P>0.05). We think that proprioceptive and vestibular system enhancing training practices to be performed with stability exercises will be beneficial in terms of both promoting functional stability and interlimb coordination. Trainers and strength coaches should be aware of differences in the postural control mechanism of deaf athletes.


2019 ◽  
Vol 7 (3) ◽  
pp. 374-388 ◽  
Author(s):  
Peter Leinen ◽  
Thomas Muehlbauer ◽  
Stefan Panzer

The present study investigated if accumulated, advanced, regular soccer practice (balance-demanding exercise) compared to regular swim practice (non-balance–demanding exercise) induces a more pronounced functional specialization in postural control. Therefore, single-leg balance performance in sub-elite young soccer players (under 13 [U13]: n = 16; U15: n = 18; U19: n = 15), and sub-elite young swimmers (U13: n = 7; U15: n = 4; U19: n = 5) was tested in different balance task conditions (i.e., static and dynamic balance on firm and foam surface). All athletes practiced 3–10 times per week. Single-leg balance of the dominant and non-dominant leg was measured using a force plate. The standard deviation of the center of pressure displacements in anterior-posterior and medio-lateral directions were used as dependent variables. Irrespective of age groups and type of sport, the results failed to indicate significant leg differences in single-leg balance performance. The soccer players showed significant better single-leg balance performance in anterior-posterior direction in the dynamic balance test on the firm and foam surface compared to the swimmers. Functional specialization was accompanied by the type of sport but not by accumulated practice.


2019 ◽  
Vol 54 (4) ◽  
pp. 439-444
Author(s):  
Daniel J. Goble ◽  
Mitchell J. Rauh ◽  
Harsimran S. Baweja

Context Balance tests are a recommended assessment of motor function in concussion protocols. The BTrackS Balance Test (BBT) is a tool for concussion balance testing that uses low-cost force-plate technology to objectively measure postural sway. Objective To provide normative data for the BBT in a large population of athletes. Design Cross-sectional study. Setting Concussion baseline testing at multiple facilities. Patients or Other Participants Male and female athletes (n = 10 045) ages 8 to 21 years. Intervention(s) Athletes performed three 20-second trials of eyes-closed standing on the BTrackS Balance Plate with feet shoulder-width apart and hands on hips. Main Outcome Measure(s) Postural sway was measured as the average total center-of-pressure path length over 3 testing trials. Results Postural sway was reduced (ie, balance improved) as athlete age increased and was less in female athletes than in male athletes. Percentile ranking tables were calculated based on sex and 2-year age groupings. Conclusions Our findings (1) provide context for BBT results performed in the absence of a baseline test, (2) can help mitigate athlete malingering, and (3) might identify individuals with latent neuromuscular injuries during baseline tests.


2014 ◽  
Vol 49 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Shelley W. Linens ◽  
Scott E. Ross ◽  
Brent L. Arnold ◽  
Richard Gayle ◽  
Peter Pidcoe

Context: Chronic ankle instability (CAI) is characterized by repeated ankle sprains, which have been linked to postural instability. Therefore, it is important for clinicians to identify individuals with CAI who can benefit from rehabilitation. Objective: To assess the likelihood that CAI participants will exhibit impaired postural stability and that healthy control participants will exhibit better test performance values. Design: Case-control study. Setting: Laboratory. Patients or Other Participants: People with CAI (n = 17, age = 23 ± 4 years, height = 168 ± 9 cm, weight = 68 ± 12 kg) who reported ankle “giving-way” sensations and healthy volunteers (n = 17, age = 23 ± 3 years, height = 168 ± 8 cm, weight = 66 ± 12 kg). Intervention(s): Participants performed 7 balance tests: Balance Error Scoring System (BESS), time in balance, foot lift, single-legged stance on a force plate, Star Excursion Balance Test, side hop, and figure-of-8 hop. Main Outcome Measure(s): Balance was quantified with errors (score) for the BESS, length of time balancing (seconds) for time-in-balance test, frequency of foot lifts (score) for foot-lift test, velocity (cm/s) for all center-of-pressure velocity measures, excursion (cm) for center-of-pressure excursion measures, area (cm2) for 95% confidence ellipse center-of-pressure area and center-of-pressure rectangular area, time (seconds) for anterior-posterior and medial-lateral time-to-boundary (TTB) measures, distance reached (cm) for Star Excursion Balance Test, and time (seconds) to complete side-hop and figure-of-8 hop tests. We calculated area-under-the-curve values and cutoff scores and used the odds ratio to determine if those with and without CAI could be distinguished using cutoff scores. Results: We found significant area-under-the-curve values for 4 static noninstrumented measures, 3 force-plate measures, and 3 functional measures. Significant cutoff scores were noted for the time-in-balance test (≤25.89 seconds), foot-lift test (≥5), single-legged stance on the firm surface (≥3 errors) and total (≥14 errors) on the BESS, center-of-pressure resultant velocity (≥1.56 cm/s), standard deviations for medial-lateral (≤1.56 seconds) time-to-boundary and anterior-posterior (≤3.78 seconds) time-to-boundary test, posteromedial direction on the Star Excursion Balance Test (≤0.91), side-hop test (≥12.88 seconds), and figure-of-8 hop test (≥17.36 seconds). Conclusions: Clinicians can use any of the 10 significant measures with their associated cutoff scores to identify those who could benefit from rehabilitation that reestablishes postural stability.


2015 ◽  
Vol 50 (9) ◽  
pp. 893-904 ◽  
Author(s):  
Karl Fullam ◽  
Brian Caulfield ◽  
Garrett F. Coughlan ◽  
Mark McGroarty ◽  
Eamonn Delahunt

Context  Decreased postural stability is a primary risk factor for lower limb musculoskeletal injuries. During athletic competitions, cryotherapy may be applied during short breaks in play or during half-time; however, its effects on postural stability remain unclear. Objective  To investigate the acute effects of a 15-minute ankle-joint cryotherapy application on dynamic postural stability. Design  Controlled laboratory study. Setting  University biomechanics laboratory. Patients or Other Participants  A total of 29 elite-level collegiate male field-sport athletes (age = 20.8 ± 1.12 years, height = 1.80 ± 0.06 m, mass = 81.89 ± 8.59 kg) participated. Intervention(s)  Participants were tested on the anterior (ANT), posterolateral (PL), and posteromedial (PM) reach directions of the Star Excursion Balance Test before and after a 15-minute ankle-joint cryotherapy application. Main Outcome Measure(s)  Normalized reach distances; sagittal-plane kinematics of the hip, knee, and ankle joints; and associated mean velocity of the center-of-pressure path during performance of the ANT, PL, and PM reach directions of the Star Excursion Balance Test. Results  We observed a decrease in reach-distance scores for the ANT, PL, and PM reach directions from precryotherapy to postcryotherapy (P &lt; .05). No differences were observed in hip-, knee-, or ankle-joint sagittal-plane kinematics (P &gt; .05). We noted a decrease in mean velocity of the center-of-pressure path from precryotherapy to postcryotherapy (P &lt; .05) in all reach directions. Conclusions  Dynamic postural stability was adversely affected immediately after cryotherapy to the ankle joint.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomasz Cudejko ◽  
James Gardiner ◽  
Asangaedem Akpan ◽  
Kristiaan D’Août

AbstractPostural and walking instabilities contribute to falls in older adults. Given that shoes affect human locomotor stability and that visual, cognitive and somatosensory systems deteriorate during aging, we aimed to: (1) compare the effects of footwear type on stability and mobility in persons with a history of falls, and (2) determine whether the effect of footwear type on stability is altered by the absence of visual input or by an additional cognitive load. Thirty participants performed standing and walking trials in three footwear conditions, i.e. conventional shoes, minimal shoes, and barefoot. The outcomes were: (1) postural stability (movement of the center of pressure during eyes open/closed), (2) walking stability (Margin of Stability during normal/dual-task walking), (3) mobility (the Timed Up and Go test and the Star Excursion Balance test), and (4) perceptions of the shoes (Monitor Orthopaedic Shoes questionnaire). Participants were more stable during standing and walking in minimal shoes than in conventional shoes, independent of visual or walking condition. Minimal shoes were more beneficial for mobility than conventional shoes and barefoot. This study supports the need for longitudinal studies investigating whether minimal footwear is more beneficial for fall prevention in older people than conventional footwear.


Author(s):  
Bożena Wojciechowska-Maszkowska ◽  
Dorota Borzucka

The aim of this study was to evaluate the effect of additional load on postural-stability control in young women. To evaluate postural control in the 34 women in this study (mean age, 20.8 years), we measured postural sway (center of pressure, COP) in a neutral stance (with eyes open) in three trials of 30 s each. Three load conditions were used in the study: 0, 14, and 30 kg. In analysis, we used three COP parameters, variability (linear), mean sway velocity (linear), and entropy (nonlinear). Results suggested that a considerable load on a young woman’s body (approximately 48% of body weight) had significant influence on stability. Specifically, heavy loads triggered random movements, increased the dynamics of postural-stability control, and required more attention to control standing posture. The results of our study indicate that inferior postural control mainly results from insufficient experience in lifting such a load.


2020 ◽  
pp. 003151252094509
Author(s):  
Mark Walsh ◽  
Caroline Church ◽  
Audrey Hoffmeister ◽  
Dean Smith ◽  
Joshua Haworth

Measurements of postural sway are used to assess physiological changes due to therapy or sport training, or to describe group differences based on activity history or disease status. Portable force plates have been widely adopted for this purpose, leading us in this study to validate with linear and nonlinear metrics the posturographic data derived from both a portable plate (Natus) when compared to an in-ground plate (Bertec). Twenty participants stood on each plate for two trials each, with and without a foam perturbation and with and without eyes open on each surface. We calculated measures of path length, range, root mean squares, sample entropy, and correlation dimensions from center of pressure traces on each plate. An intraclass correlation coefficient across trials from each plate in each condition indicated satisfactory overall reliability (ICC consistency), supporting the use of either plate for postural sway research and interventions. Additionally, our results generally supported common validity (ICC absolute agreement), though, the specific degree of similarity differed for each of the tested metrics of postural sway, especially when considering whether or not data was filtered. For situations in which participants cannot visit a laboratory (e.g. performing athletes, community dwelling clinical patients, and virus risk concerns) an in-home portable force plate is a trusted and valuable data collection tool.


2017 ◽  
Vol 1 (S1) ◽  
pp. 26-26
Author(s):  
Haylie Miller ◽  
Nicoleta Bugnariu ◽  
Priscila Caçola ◽  
Rita Patterson

OBJECTIVES/SPECIFIC AIMS: Individuals with autism spectrum disorder (ASD) and developmental coordination disorder (DCD) share overlap in their motor symptom profile and underlying neurology (Sumner, Leonard, & Hill, 2016, JADD). DSM-5 guidelines allow these 2 disorders to be independent or co-occurring (APA, 2013), but common clinical practice does not include systematic assessment to determine the presence or absence of co-occurring DCD in children with ASD, or vice versa. Furthermore, in many cases DCD is managed in a nonspecific manner, with schools making accommodations for a child’s motor challenges without formally assigning a diagnosis of DCD. Thus, somewhat subjective, qualitative judgments are made by clinicians to classify children as DCD, ASD, or ASD+DCD in the absence of a reliable, valid, quantitative measure to distinguish between these profiles. As a first step toward developing such a measure, researchers must tease apart the nuanced differences in the motor symptoms of these 2 developmental disorders using methods that are scalable to clinical and educational settings. These methods must also be developed with consideration for logistical variables such as cost, clinical utility of data output, and ease-of-use if they are to be transferrable to physicians, school nurses, and other community health workers outside of academic laboratory settings. To that end, we conducted 2 complementary studies: 1 in the lab and 1 in the community. METHODS/STUDY POPULATION: In the community-based study, we used an affordable, user-friendly, portable balance testing system to assess postural stability during quiet standing (feet shoulder-width apart) with eyes open for 30 seconds. Data were generated from a single force plate in the balance platform. Potential participants were screened for other medical and neurological conditions that might impact their postural stability, and those with significant comorbidities were excluded. We tested 15 children with a reported diagnosis of ASD, 8 children with suspected or diagnosed DCD who were enrolled in a motor intervention program, and 30 typically-developing (TD) children with no significant developmental history reported. The ASD group ranged in age from 7 to 20, the DCD group ranged from 7 to 10, and the TD group ranged from 7 to 19. In the lab-based study, we again obtained force plate data during quiet standing (feet shoulder-width apart) with eyes open for 30 seconds, in our system that also included full-body motion capture, virtual reality, and mobile eye tracking. (Data from these additional sources are not discussed in this disseminaton, as our current focus is on identifying a simple, scalable metric that can be used to distinguish ASD from DCD.) We tested 10 children with a diagnosis of ASD that was confirmed by the research team, 10 children with a diagnosis of DCD that was confirmed by the research team, and 5 TD children with no significant developmental history reported. The ASD group ranged in age from 7 to 18, the DCD group ranged from 8 to 12, and the TD group ranged from 9 to 18. RESULTS/ANTICIPATED RESULTS: Primary outcome measures in both studies were related to Center of Pressure (CoP), including CoP sway, CoP velocity, and amount of sway relative to the base of support. Data analysis from both studies is ongoing, but preliminary trends suggest that CoP metrics may effectively differentiate between ASD, DCD, and TD. During quiet standing, individuals with DCD exhibited the greatest postural sway. Individuals with ASD followed, having greater instability than the TD group. Differences were also evident in the velocity profiles of postural sway. DISCUSSION/SIGNIFICANCE OF IMPACT: Preliminary findings suggest that CoP offers a means of differentiating between typical and atypical development specifically with respect to motor symptoms. This simple, quantifiable measure may prove a sensitive and specific means of systematically assessing co-occurrence of ASD and DCD in clinical and educational settings, leading to more accurate diagnostic classification and tailored intervention. Future directions include conducting analyses that account for participant age and developmental stage with respect to motor skills, determining whether trends hold in a larger sample, and using advanced statistical methods to determine whether CoP variables have predictive validity in discriminating between classifications of ASD, DCD, ASD+DCD, and TD. Eye-movement data were also obtained during these tasks, and may further aid in understanding the factors contributing to atypical postural control. These 2 studies also yielded methodological findings, namely that the portable force platform carries the benefit of high ease-of-use, low cost, and portability, but also has important drawbacks. Specifically, it is not capable of registering accurate CoP data for participants who weigh <40 lbs, and the error variance for the load cells is greater than that of most nonportable, higher-end plates like those embedded in our laboratory’s platform. As technological advances continue to facilitate development of more portable, higher-resolution systems, these drawbacks may be significantly reduced. Future directions include further assessment of portable, affordable solutions for this type of testing to identify whether higher-resolution options are available, whether this added resolution increases classification accuracy, and how ease-of-use is perceived by clinical and community health workers.


Author(s):  
Elżbieta Piątek ◽  
Michał Kuczyński ◽  
Bożena Ostrowska

Due to balance deficits that accompany adolescent idiopathic scoliosis (AIS), the potential interaction between activities of daily living and active self-correction movements (ASC) on postural control deserves particular attention. Our purpose was to assess the effects of ASC movements with or without a secondary mental task on postural control in twenty-five girls with AIS. It is a quasi-experimental within-subject design with repeated measures ANOVA. They were measured in four 20-s quiet standing trials on a force plate: no task, ASC, Stroop test, and both. Based on the center-of-pressure (COP) recordings, the COP parameters were computed. The ASC alone had no effect on any of the postural sway measures. Stroop test alone decreased COP speed and increased COP entropy. Performing the ASC movements and Stroop test together increased the COP speed and decreased COP entropy as compared to the baseline data. In conclusion, our results indicate that AIS did not interfere with postural control. The effects of the Stroop test accounted for good capacity of subjects with AIS to take advantage of distracting attentional resources from the posture. However, performing both tasks together exhibited some deficits in postural control, which may suggest the need for therapeutic consultation while engaging in more demanding activities.


Sign in / Sign up

Export Citation Format

Share Document