Developing a RadLex-based Named Entity Recognition Tool for Mining Textual Radiology Reports (Preprint)

2020 ◽  
Author(s):  
Shintaro Tsuji ◽  
Andrew Wen ◽  
Naoki Takahashi ◽  
Hongjian Zhang ◽  
Katsuhiko Ogasawara ◽  
...  

BACKGROUND Named entity recognition (NER) plays an important role in extracting the features of descriptions for mining free-text radiology reports. However, the performance of existing NER tools is limited because the number of entities depends on its dictionary lookup. Especially, the recognition of compound terms is very complicated because there are a variety of patterns. OBJECTIVE The objective of the study is to develop and evaluate a NER tool concerned with compound terms using the RadLex for mining free-text radiology reports. METHODS We leveraged the clinical Text Analysis and Knowledge Extraction System (cTAKES) to develop customized pipelines using both RadLex and SentiWordNet (a general-purpose dictionary, GPD). We manually annotated 400 of radiology reports for compound terms (Cts) in noun phrases and used them as the gold standard for the performance evaluation (precision, recall, and F-measure). Additionally, we also created a compound-term-enhanced dictionary (CtED) by analyzing false negatives (FNs) and false positives (FPs), and applied it for another 100 radiology reports for validation. We also evaluated the stem terms of compound terms, through defining two measures: an occurrence ratio (OR) and a matching ratio (MR). RESULTS The F-measure of the cTAKES+RadLex+GPD was 32.2% (Precision 92.1%, Recall 19.6%) and that of combined the CtED was 67.1% (Precision 98.1%, Recall 51.0%). The OR indicated that stem terms of “effusion”, "node", "tube", and "disease" were used frequently, but it still lacks capturing Cts. The MR showed that 71.9% of stem terms matched with that of ontologies and RadLex improved about 22% of the MR from the cTAKES default dictionary. The OR and MR revealed that the characteristics of stem terms would have the potential to help generate synonymous phrases using ontologies. CONCLUSIONS We developed a RadLex-based customized pipeline for parsing radiology reports and demonstrated that CtED and stem term analysis has the potential to improve dictionary-based NER performance toward expanding vocabularies.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Irene Pérez-Díez ◽  
Raúl Pérez-Moraga ◽  
Adolfo López-Cerdán ◽  
Jose-Maria Salinas-Serrano ◽  
María de la Iglesia-Vayá

Abstract Background Medical texts such as radiology reports or electronic health records are a powerful source of data for researchers. Anonymization methods must be developed to de-identify documents containing personal information from both patients and medical staff. Although currently there are several anonymization strategies for the English language, they are also language-dependent. Here, we introduce a named entity recognition strategy for Spanish medical texts, translatable to other languages. Results We tested 4 neural networks on our radiology reports dataset, achieving a recall of 97.18% of the identifying entities. Alongside, we developed a randomization algorithm to substitute the detected entities with new ones from the same category, making it virtually impossible to differentiate real data from synthetic data. The three best architectures were tested with the MEDDOCAN challenge dataset of electronic health records as an external test, achieving a recall of 69.18%. Conclusions The strategy proposed, combining named entity recognition tasks with randomization of entities, is suitable for Spanish radiology reports. It does not require a big training corpus, thus it could be easily extended to other languages and medical texts, such as electronic health records.


2021 ◽  
Vol 16 ◽  
pp. 1-10
Author(s):  
Husni Teja Sukmana ◽  
JM Muslimin ◽  
Asep Fajar Firmansyah ◽  
Lee Kyung Oh

In Indonesia, philanthropy is identical to Zakat. Zakat belongs to a specific domain because it has its characteristics of knowledge. This research studied knowledge graph in the Zakat domain called KGZ which is conducted in Indonesia. This area is still rarely performed, thus it becomes the first knowledge graph for Zakat in Indonesia. It is designed to provide basic knowledge on Zakat and managing the Zakat in Indonesia. There are some issues with building KGZ, firstly, the existing Indonesian named entity recognition (NER) is non-restricted and general-purpose based which data is obtained from a general source like news. Second, there is no dataset for NER in the Zakat domain. We define four steps to build KGZ, involving data acquisition, extracting entities and their relationship, mapping to ontology, and deploying knowledge graphs and visualizations. This research contributed a knowledge graph for Zakat (KGZ) and a building NER model for Zakat, called KGZ-NER. We defined 17 new named entity classes related to Zakat with 272 entities, 169 relationships and provided labelled datasets for KGZ-NER that are publicly accessible. We applied the Indonesian-Open Domain Information Extractor framework to process identifying entities’ relationships. Then designed modeling of information using resources description framework (RDF) to build the knowledge base for KGZ and store it to GraphDB, a product from Ontotext. This NER model has a precision 0.7641, recall 0.4544, and F1-score 0.5655. The increasing data size of KGZ is required to discover all of the knowledge of Zakat and managing Zakat in Indonesia. Moreover, sufficient resources are required in future works.


Author(s):  
Shintaro Tsuji ◽  
Andrew Wen ◽  
Naoki Takahashi ◽  
Hongjian Zhang ◽  
Katsuhiko Ogasawara ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ming Cheng ◽  
Shufeng Xiong ◽  
Fei Li ◽  
Pan Liang ◽  
Jianbo Gao

Abstract Background Named entity recognition (NER) on Chinese electronic medical/healthcare records has attracted significantly attentions as it can be applied to building applications to understand these records. Most previous methods have been purely data-driven, requiring high-quality and large-scale labeled medical data. However, labeled data is expensive to obtain, and these data-driven methods are difficult to handle rare and unseen entities. Methods To tackle these problems, this study presents a novel multi-task deep neural network model for Chinese NER in the medical domain. We incorporate dictionary features into neural networks, and a general secondary named entity segmentation is used as auxiliary task to improve the performance of the primary task of named entity recognition. Results In order to evaluate the proposed method, we compare it with other currently popular methods, on three benchmark datasets. Two of the datasets are publicly available, and the other one is constructed by us. Experimental results show that the proposed model achieves 91.07% average f-measure on the two public datasets and 87.05% f-measure on private dataset. Conclusions The comparison results of different models demonstrated the effectiveness of our model. The proposed model outperformed traditional statistical models.


2021 ◽  
Author(s):  
Nona Naderi ◽  
Julien Knafou ◽  
Jenny Copara ◽  
Patrick Ruch ◽  
Douglas Teodoro

AbstractThe health and life science domains are well known for their wealth of entities. These entities are presented as free text in large corpora, such as biomedical scientific and electronic health records. To enable the secondary use of these corpora and unlock their value, named entity recognition (NER) methods are proposed. Inspired by the success of deep masked language models, we present an ensemble approach for NER using these models. Results show statistically significant improvement of the ensemble models over baselines based on individual models in multiple domains - chemical, clinical and wet lab - and languages - English and French. The ensemble model achieves an overall performance of 79.2% macro F1-score, a 4.6 percentage point increase upon the baseline in multiple domains and languages. These results suggests that ensembles are a more effective strategy for tackling NER. We further perform a detailed analysis of their performance based on a set of entity properties.


2018 ◽  
Author(s):  
Yudi Wibisono ◽  
Masayu Leylia Khodra

Pengenalan entitas bernama (named-entity recognition atau NER) adalah proses otomatis mengekstraksi entitas bernama yang dianggap penting di dalam sebuah teks dan menentukan kategorinya ke dalam kategori terdefinisi. Sebagai contoh, untuk teks berita, NER dapat mengekstraksi nama orang, nama organisasi, dan nama lokasi. NER bermanfaat dalam berbagai aplikasi analisis teks, misalnya pencarian, sistem tanya jawab, peringkasan teks dan mesin penerjemah. Tantangan utama NER adalah penanganan ambiguitas makna karena konteks kata pada kalimat, misalnya kata “Cendana” dapat merupakan nama lokasi (Jalan Cendana), atau nama organisasi (Keluarga Cendana), atau nama tanaman. Tantangan lainnya adalah penentuan batas entitas, misalnya “[Istora Senayan] [Jakarta]”. Berbagai kakas NER telah dikembangkan untuk berbagai bahasa terutama Bahasa Inggris dengan kinerja yang baik, tetapi kakas NER bahasa Indonesia masih memiliki kinerja yang belum baik. Makalah ini membahas pendekatan berbasis pembelajaran mesin untuk menghasilkan model NER bahasa Indonesia. Pendekatan ini sangat bergantung pada korpus yang menjadi sumber belajar, dan teknik pembelajaran mesin yang digunakan. Teknik yang akan digunakan adalah LSTM - CRF (Long Short Term Memory – Conditional Random Field). Hasil terbaik (F-measure = 0.72) didapatkan dengan menggunakan word embedding GloVe Wikipedia Bahasa Indonesia.


2014 ◽  
Vol 21 (5) ◽  
pp. 808-814 ◽  
Author(s):  
J. Lei ◽  
B. Tang ◽  
X. Lu ◽  
K. Gao ◽  
M. Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document