scholarly journals Comparing the Diagnostic Accuracy of Simple Tests to Screen for Diabetic Peripheral Neuropathy: Protocol for a Cross-Sectional Study (Preprint)

2017 ◽  
Author(s):  
Kate Goddard ◽  
Prashanth Vas ◽  
Alistair Purves ◽  
Viktoria McMillan ◽  
Thomas Langford ◽  
...  

BACKGROUND Various tests are used to detect diabetic peripheral neuropathy by assessing sense perception in the feet. Tests vary in terms of time and resources required. Simple tests are those that can be conducted quickly and easily in primary care without laboratory equipment. There are some limitations to these simple tests, an example being the variable amplitude of the 128 Hz tuning fork. A new test, VibraTip (McCallan Medical, UK), might be a valuable alternative as it emits a consistent amplitude and may offer improved diagnostic accuracy. OBJECTIVE The aims of this study are to estimate the diagnostic accuracy of the VibraTip device for diabetic peripheral neuropathy against the reference standard of sural nerve conduction velocity measurement, and to assess whether the VibraTip offers superior diagnostic accuracy to other routine tests based on vibration or touch. METHODS The study will prospectively recruit adults with type 2 diabetes who are due to attend a routine follow-up clinic. A cross-sectional study design will be employed to assess the diagnostic accuracy of 5 standard index tests for peripheral neuropathy, including VibraTip. The reference test will be sural nerve conduction velocity measurement. RESULTS Funding is being sought to conduct this research. The outcomes assessed will be the diagnostic accuracy of the 5 index tests against sural nerve conduction velocity measurement, including sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio. Receiver operating characteristic curves will be constructed and compared for each test. CONCLUSIONS This study will be the first within-study comparison of 5 simple tests for screening diabetic peripheral neuropathy and will address uncertainties in the potential benefits of using VibraTip in comparison with the other tests.

2018 ◽  
Vol 50 (2) ◽  
pp. 585-596 ◽  
Author(s):  
Yi Lu ◽  
Jiayin Yao ◽  
Chulian Gong ◽  
Bao Wang ◽  
Piao Zhou ◽  
...  

Background/Aims: Gentiopicroside is promising as an important secoiridoid compound against pain. The present study aimed to investigate the analgesic effect and the probable mechanism of Gentiopicroside on Diabetic Peripheral Neuropathy (DPN), and to figure out the association among Gentiopicroside, dyslipidemia and PPAR- γ/AMPK/ACC signaling pathway. Methods: DPN rat models were established by streptozotocin and RSC96 cells were cultured. Hot, cold and mechanical tactile allodynia were conducted. Blood lipids, nerve blood flow, Motor Nerve Conduction Velocity (MNCV) and Sensory Nerve Conduction Velocity (SNCV) were detected. Gene and protein expression of PPAR- γ/AMPK/ACC pathway was analyzed by reverse transcription-quan titative polymerase chain reaction (RT-qPCR) and Westernblot. Besides, PPAR-γ antagonist GW9662 and agonist rosiglitazone, AMPK antagonist compound C and activator AICAR as well as ACC inhibitor TOFA were used to further confirm the relationship between PPAR-γ and AMPK. Results: The results demonstrated that Gentiopicroside markedly ameliorated hyperalgesia with prolonged paw withdrawal latency to heat and cold stimuli and fewer responses to mechanical allodynia compared with DPN model group. Gentiopicroside regulated dyslipidemia, enhanced nerve blood flow and improved MNCV as well as SNCV. Gentiopicroside suppressed ACC expression through the activation of AMPK and PPAR-γ mediated the activation of AMPK and subsequent inhibition of ACC expression. Conclusion: In conclusion, the present study demon strated that Gentiopicroside exerted nerve-protective effect and attenuated experimental DPN by restoring dyslipidmia and improved nerve blood flow through regulating PPAR-γ/AMPK/ACC signal pathway. These results provided a promising potential treatment of DPN.


2020 ◽  
Vol 8 (1) ◽  
pp. e001004 ◽  
Author(s):  
Joo-Shin Tan ◽  
Chou-Ching Lin ◽  
Gin-Shin Chen

ObjectiveEffective treatment methods for diabetic peripheral neuropathy are still lacking. Here, a focused ultrasound (FUS) technique was developed to improve blood flow in diabetic peripheral vessels and potentially treat diabetic peripheral neuropathy.Research design and methodsMale adult Sprague-Dawley rats at 4 weeks poststreptozotocin injections were adopted as models for diabetic neuropathic rats. For single FUS treatment, blood perfusion in the skin of the pad of the middle toe was measured before, during, and after the medial and lateral plantar arteries were treated by FUS. For multiple FUS treatments, blood perfusion measurements, von Frey and hot plate testing and nerve conduction velocity measurements were performed before ultrasonic treatment on the first day of each week, and the microvascular and neural fiber densities in the pad of the toe were measured on the first day of the last week.ResultsThe blood perfusion rate significantly increased for 7–10 min in the control and neuropathic rats after a single ultrasound exposure. Multiple ultrasound treatments compared with no treatments significantly increased blood perfusion at the second week and further enhanced perfusion at the third week in the neuropathic rats. Additionally, the paw withdrawal force and latency significantly increased from 34.33±4.55 g and 3.96±0.25 s at the first week to 39.10±5.02 g and 4.77±0.71 s at the second week and to 41.13±2.57 g and 5.24±0.86 s at the third week, respectively. The low nerve conduction velocity in the diabetic rats also improved after the ultrasound treatments. Additionally, ultrasound treatments halted the decrease in microvessel and neural fiber densities in the skin of the diabetic toes. Histologic analysis indicated no damage to the treated arteries or neighboring tissue.ConclusionsFUS treatment can increase upstream arterial blood flow in diabetic feet, ameliorate the decrease in downstream microvessel perfusion and halt neuropathic progression.


2018 ◽  
Vol 7 (4) ◽  
pp. e72 ◽  
Author(s):  
Kate Goddard ◽  
Prashanth Vas ◽  
Alistair Purves ◽  
Viktoria McMillan ◽  
Thomas Langford ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Baocheng Xie ◽  
Qinghui Wang ◽  
Chenhui Zhou ◽  
Jiahuan Wu ◽  
Daohua Xu

Objective. The injection of the traditional Chinese patent medicine puerarin has been widely used in the treatment of various diseases such as angina pectoris or ischemic stroke. We aim to evaluate the efficacy and safety of puerarin injection for the treatment of diabetic peripheral neuropathy (DPN). Methods. A systematic literature search was performed in seven medical databases from their inception until June 2017. 53 studies with RCTs, totaling 3284 patients, were included in this meta-analysis. The included studies were assessed by the Cochrane risk of bias and analyzed by Review Manager 5.3 software. Results. The meta-analysis showed that puerarin injection for the treatment of DPN was significantly better compared with the control group in terms of the total effective rate. The result showed that puerarin injection for the treatment of DPN can significantly increase the probability of sensory nerve conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) of the median and peroneal nerves. Conclusions. This meta-analysis demonstrated that puerarin injection may be more effective and safe for the treatment of DPN. However, further and higher quality RCTs are required to prove its efficacy and provide meaningful evidence for clinical treatment due to the poor methodological quality.


Sign in / Sign up

Export Citation Format

Share Document