Traveling Wave Solutions for MHD Aligned Flow of a Second Grade Fluid

Author(s):  
Najeeb Alam Khan ◽  
Amir Mahmood ◽  
Muhammad Jamil ◽  
Nasir-Uddin Khan

In this work, an approach based on traveling wave phenomenon is implemented for finding exact solutions of MHD aligned flow of an incompressible second grade fluid. The partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by using wave parameter. The methodology used in this work is independent of symmetry consideration and other restrictive assumption. Comparison is made with the results obtained previously.

2014 ◽  
Vol 3 (4) ◽  
Author(s):  
Najeeb Alam Khan ◽  
Hassam Khan

AbstractIn this note, traveling wave solutions for (3 + 1) dimensional fluid models of incompressible flow are considered. The governing partial differential equations of two models are reduced to ordinary differential equation by employing wave parameter and exact solutions are obtained. It is shown that these fluid models allow 3 + 1 dimensional solutions amongst each other. The methodology used in this work is independent of symmetric consideration and other restrictive assumption. Finally, a set of example of boundary condition is discussed for the couple stress fluid. It is observed that velocity profile strongly depends upon couple stress parameter.


2016 ◽  
Vol 21 (2) ◽  
pp. 359-376
Author(s):  
N.A. Khan ◽  
F. Naz

AbstractThis investigation analyses a three dimensional flow and mass transfer of a second grade fluid over a porous stretching wall in the presence of suction or injection. The equations governing the flow are attained in terms of partial differential equations. A similarity transformation has been utilized for the transformation of partial differential equations into the ordinary differential equations. The solutions of the nonlinear systems are given by the homotopy analysis method (HAM). A comparative study with the previous results of a viscous fluid has been made. The convergence of the series solution has also been considered explicitly. The influence of admissible parameters on the flows is delineated through graphs and appropriate results are presented. In addition, it is found that instantaneous suction and injection reduce viscous drag on the stretching sheet. It is also shown that suction or injection of a fluid through the surface is an example of mass transfer and it can change the flow field.


Author(s):  
Nadeem Abbas ◽  
M. Y. Malik ◽  
Sohail Nadeem ◽  
Shafiq Hussain ◽  
A. S. El-Shafa

Stagnation point flow of viscoelastic second grade fluid over a stretching cylinder under the thermal slip and magnetic hydrodynamics effects are studied. The mathematical model has been developed under the assumption of non-Newtonian viscoelastic fluid flow over a stretching cylinder by means of the boundary layer approximations. The developed model further reduced through the similarity transformations and constructs the model of nonlinear ordinary differential equations. The system of nonlinear differential equations is dimensionless and solved through the numerical technique bvp5c methods. The results of the physical parameters are found and interpreted in the form of tables and graphs. The velocity shows that the graph of curves enhances away from the surface when the values material parameter [Formula: see text] increase, which means the momentum boundary layer increases for enhancing the material parameter [Formula: see text]. The temperature gradient reduced due enhancing the values of material parameter [Formula: see text] because thermal boundary layer reduced for higher values of material parameter [Formula: see text].


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1819
Author(s):  
Radu Constantinescu ◽  
Aurelia Florian

This paper considers issues such as integrability and how to get specific classes of solutions for nonlinear differential equations. The nonlinear Kundu–Mukherjee–Naskar (KMN) equation is chosen as a model, and its traveling wave solutions are investigated by using a direct solving method. It is a quite recent proposed approach called the functional expansion and it is based on the use of auxiliary equations. The main objectives are to provide arguments that the functional expansion offers more general solutions, and to point out how these solutions depend on the choice of the auxiliary equation. To see that, two different equations are considered, one first order and one second order differential equations. A large variety of KMN solutions are generated, part of them listed for the first time. Comments and remarks on the dependence of these solutions on the solving method and on form of the auxiliary equation, are included.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yongyi Gu ◽  
Bingmao Deng ◽  
Jianming Lin

We derive exact traveling wave solutions to the (2 + 1)-dimensional Jaulent-Miodek equation by means of the complex method, and then we illustrate our main result by some computer simulations. It has presented that the applied method is very efficient and is practically well suited for the nonlinear differential equations that arise in mathematical physics.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Sanoe Koonprasert

We apply the G′/G2-expansion method to construct exact solutions of three interesting problems in physics and nanobiosciences which are modeled by nonlinear partial differential equations (NPDEs). The problems to which we want to obtain exact solutions consist of the Benny-Luke equation, the equation of nanoionic currents along microtubules, and the generalized Hirota-Satsuma coupled KdV system. The obtained exact solutions of the problems via using the method are categorized into three types including trigonometric solutions, exponential solutions, and rational solutions. The applications of the method are simple, efficient, and reliable by means of using a symbolically computational package. Applying the proposed method to the problems, we have some innovative exact solutions which are different from the ones obtained using other methods employed previously.


Sign in / Sign up

Export Citation Format

Share Document