scholarly journals Control of TIG Arc with Scanning CO2 Laser Beam. Study on High Speed Surface Treatment by Arc with Laser. (3rd Report).

2000 ◽  
Vol 18 (4) ◽  
pp. 534-539 ◽  
Author(s):  
Akihiro UTSUMI ◽  
Jun MATSUDA ◽  
Masafumi YONEDA ◽  
Munehide KATSUMURA
1997 ◽  
Vol 15 (3) ◽  
pp. 445-452 ◽  
Author(s):  
Jun MATSUDA ◽  
Akihiro UTSUMI ◽  
Masafumi YONEDA ◽  
Munehide KATSUMURA ◽  
Hiroyasu YANOU ◽  
...  

Author(s):  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa ◽  
Shogo Matsutani

This report describes the quality assessment of blind via holes (BVHs) of Printed Wiring Boards (PWBs) drilled by a CO2 laser using Cu-direct drilling. In the Cu-direct drilling method, the copper foil and the buildup layer are melted at the same time, and the surface is treated to increase the laser energy absorbed by the copper foil because an untreated copper surface reflects most of the 10.6-μm-wavelength CO2 laser beam. We used black-oxide and V-bond treatments as surface treatment. Previously, the only black-oxide treatment was paid attention to, but the new V-bond treatment is also investigated in this report. First, a straightforward method employing infrared thermography was proposed to determine the absorbance of the CO2 laser beam by the copper surface. Then, we used SEM to characterize the copper surfaces after surface treatment, and established the relationship between laser absorbance and surface shape. Subsequently, we observed the circumference of a point irradiated with the CO2 laser and explained melting processes were different from surface shape. Finally, we investigated the relationship between laser absorbance and BVH quality, and showed that a high absorbance improved BVH quality.


2002 ◽  
Vol 20 (1) ◽  
pp. 38-46
Author(s):  
Jun MATSUDA ◽  
Akihiro UTSUMI ◽  
Masafumi YONEDA ◽  
Munehide KATSUMURA

2020 ◽  
Vol 62 (7) ◽  
pp. 689-697
Author(s):  
Zulkuf Balalan ◽  
Furkan Sarsilmaz ◽  
Omer Ekinci

Alloy Digest ◽  
1986 ◽  
Vol 35 (11) ◽  

Abstract ENPLATE NI-423 is a nickel-phosphorus alloy deposited by chemical reduction without electric current. It is deposited by a stable, relatively high-speed functional electroless nickel process that produces a low-stress coating with good ductility and excellent resistance to corrosion. Its many uses include equipment for chemicals and food, aerospace components, molds and electronic devices. This datasheet provides information on composition, physical properties, and hardness. It also includes information on corrosion and wear resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: Ni-343. Producer or source: Enthone Inc..


Alloy Digest ◽  
1974 ◽  
Vol 23 (11) ◽  

Abstract VASCO M-50 is a hardenable (martensitic), low-alloy high-speed steel developed primarily for high-strength, high-load components (such as bearings and gears) designed for elevated-temperature service. It may be used at temperatures up to 600 F; this is in contrast to AISI 52100 steel which may be used up to only 350 F. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: TS-278. Producer or source: Teledyne Vasco.


Alloy Digest ◽  
1973 ◽  
Vol 22 (11) ◽  

Abstract EXOCUT is a super high-speed tool steel capable of being heat treated to Rockwell C 70. It is well suited for machining hard and difficult-to-machine materials. This datasheet provides information on composition, hardness, and elasticity as well as fracture toughness. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: TS-265. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1998 ◽  
Vol 47 (10) ◽  

Abstract Vanadis 23 is a Cr-Mo-W-Va alloyed high-speed steel made by powder metallurgy. The tool steel offers an excellent combination of wear resistance and toughness. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on heat treating, machining, and surface treatment. Filing Code: TS-561. Producer or source: Uddeholm Corporation. See also Alloy Digest TS-552, March 1997.


Sign in / Sign up

Export Citation Format

Share Document