scholarly journals Effect of Friction Time and Friction Pressure on Tensile Strength of Welded Joint for Medium and High Carbon Steels by Low Heat Input Friction Welding Method

2005 ◽  
Vol 23 (4) ◽  
pp. 577-586 ◽  
Author(s):  
Masaaki KIMURA ◽  
Yosuke OHTSUKA ◽  
Masahiro KUSAKA ◽  
Kenji SEO ◽  
Akiyoshi FUJI
Author(s):  
Ho Thi My Nu ◽  
Nguyen Huu Loc ◽  
Luu Phuong Minh

In this study, Ti6Al4V rods were butt-welded by rotary friction welding. The experimental results show that the weld quality, in terms of the tensile strength and hardness, decreases radially. Therefore, the radius of the welded parts that are viable for rotating friction welding is limited because the areas located far from the centre of the axis have poor mechanical properties. The parameter that impacts the tensile strength and microhardness the most during rotary friction welding of Ti6Al4V is the axial pressure, which includes the friction pressure and forging pressure. A high forging pressure produces fine, equiaxed, and recrystallized grain structures in the welded joint, resulting in a high tensile strength and microhardness. In addition, an increased forging pressure can be used in rotary friction welding to reduce the radial differences in the mechanical properties of the welded joints.


2021 ◽  
Vol 410 ◽  
pp. 299-305
Author(s):  
Artem S. Atamashkin ◽  
Elena Y. Priymak ◽  
Elena A. Kuzmina

In this work, pipe billets with a diameter of 73 mm and a wall thickness of 9 mm from steels 32G2 and 40KhN are friction welded with an aim to optimize the process parameters. The friction pressure, the forging pressure and the length of the fusion varied. After the implementation of various welding modes, tensile tests and metallographic studies were carried out. The optimal welding parameters have been established, which make it possible to obtain tensile strength at the level of the 32G2 base metal. The study results of the microstructure and SEM fractographs after the optimal welding mode are presented.


Author(s):  
Totok Suwanda ◽  
Rudy Soenoko ◽  
Yudy Surya Irawan ◽  
Moch. Agus Choiron

This article explains the use of the response surface method to produce the optimum tensile strength for the joining of dissimilar metals with the continuous drive friction welding method. The joining of dissimilar metals is one of the biggest challenges in providing industrial applications. Continuous drive friction welding has been extensively used as one of the important solid-state welding processes. In this study, the optimization of the friction welding process parameters is established to achieve the maximum tensile strength in AA6061 and AISI304 dissimilar joints via the response surface methodology. The effect of continuous drive friction welding parameters, which are friction pressure, friction time, upset pressure, and upset time, are investigated using response surface analysis. The design matrix factors are set as 27 experiments based on Box-Behnken. The 3D surface and the contour is plotted for this model to accomplish the tensile strength optimization. The optimization model of the tensile strength was verified by conducting experiments on the optimum values of the parameters based on the experimental data results. It can be denoted that the optimum process parameters settings were friction pressure = 25 MPa, friction time = 6 seconds, upset pressure = 140 MPa, and upset time = 8 seconds, which would result in a maximum tensile strength of 228.57 MPa.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Efe Işık ◽  
Çiçek Özes

This paper deals with the friction welding of the tube yoke and the tube of the drive shaft used in light commercial vehicles. Tube yoke made from hot forged microalloyed steel and the tube made from cold drawn steel, with a ratio (thickness/outside diameter ratio) of less than 0.1, were successfully welded by friction welding method. Hardness distributions on both sides of the welded joint across the welding interface were determined and the microstructure of the joint was investigated. Furthermore, joint strength was tested under tensile, static torsional, and torsional fatigue loadings. The tested data were analyzed by Weibull distribution. The maximum hardness value along the welded joint was detected as 553 Hv1. The lowest detected tensile strength of the joint was 13% less than the base materials’ tensile strength. The torsional load carrying capacity of the friction welded thin walled tubular joint without any damage was obtained as 4.252,5 Nm in 95% confidence interval. After conducting fully reversed torsional fatigue tests, the fatigue life of friction welded tubular joints was detected as 220.066,3 cycles.


2015 ◽  
Vol 2015 (0) ◽  
pp. _J0470105--_J0470105-
Author(s):  
Masaaki KIMURA ◽  
Tsukasa IIJIMA ◽  
Masahiro KUSAKA ◽  
Koichi KAIZU ◽  
Akiyoshi FUJI ◽  
...  

2007 ◽  
Vol 539-543 ◽  
pp. 4550-4555
Author(s):  
Hai Sheng Shi ◽  
Guang Min Luo ◽  
Jun Fei Fan ◽  
Yi Jian Lin ◽  
Jing Guo Zhang

The effect of hot rolling parameters on graphitization of a spray formed ultra high carbon steels(UHCSs) was described. The number of graphite stringers and graphite area fractions increased with the increase of rolling reduction. Graphite stringers nucleated at small pores and grew by carbon diffusion from adjacent austenite during hot rolling. Alloy contents, pores and hot deformation atγ+Fe3C phase range are the key factors for graphitization.The graphite stringers of UHCSs have little effect on tensile strength, but reduce the ductility at room temperature.


Sign in / Sign up

Export Citation Format

Share Document