scholarly journals Numerical and Experimental Study on Fatigue Life Extension of U-rib Steel Structure by Hammer Peening

2017 ◽  
Vol 35 (2) ◽  
pp. 169s-172s ◽  
Author(s):  
Seiichiro Tsutsumi ◽  
Ryota Nagao ◽  
Riccardo Fincato ◽  
Toshiyuki Ishikawa ◽  
Risa Matsumoto
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2331
Author(s):  
Yixun Wang ◽  
Yuxiao Luo ◽  
Yuki Kotani ◽  
Seiichiro Tsutsumi

The authors wish to revise in the text of Appendix A, pages 19–21 [...]


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1249
Author(s):  
Yixun Wang ◽  
Yuxiao Luo ◽  
Yuki Kotani ◽  
Seiichiro Tsutsumi

The existing S-N curves by effective notch stress to assess the fatigue life of gusset welded joints can result in reduced accuracy due to the oversimplification of bead geometries. The present work proposes the parametric formulae of stress concentration factor (SCF) for as-welded gusset joints based on the spline model, by which the effective notch stress can be accurately calculated for fatigue resistance assessment. The spline model is also modified to make it applicable to the additional weld. The fatigue resistance of as-welded and additional-welded specimens is assessed considering the geometric effects and weld profiles. The results show that the error of SCFs by the proposed formulae is proven to be smaller than 5%. The additional weld can increase the fatigue life by as great as 9.4 times, mainly because the increasing weld toe radius and weld leg length lead to the smaller SCF. The proposed series of S-N curves, considering different SCFs, can be used to assess the welded joints with various geometric parameters and weld profiles.


Author(s):  
Haigen Cheng ◽  
Cong Hu ◽  
Yong Jiang

AbstractThe steel structure under the action of alternating load for a long time is prone to fatigue failure and affects the safety of the engineering structure. For steel structures in complex environments such as corrosive media and fires, the remaining fatigue life is more difficult to predict theoretically. To this end, the article carried out fatigue tests on Q420qD high-performance steel cross joints under three different working conditions, established a 95% survival rate $$S{ - }N$$ S - N curves, and analyzed the effects of corrosive media and high fire temperatures on its fatigue performance. And refer to the current specifications to evaluate its fatigue performance. The results show that the fatigue performance of the cross joint connection is reduced under the influence of corrosive medium, and the fatigue performance of the cross joint connection is improved under the high temperature of fire. When the number of cycles is more than 200,000 times, the design curves of EN code, GBJ code, and GB code can better predict the fatigue life of cross joints without treatment, only corrosion treatment, and corrosion and fire treatment, and all have sufficient safety reserve.


2011 ◽  
Vol 243-249 ◽  
pp. 1435-1438 ◽  
Author(s):  
Ming Chen ◽  
Yang Sun ◽  
Bing Qian Pi

The double C steel section is made of two C steels with gusset plate through bolts. A ridge joint of double C steel is studied through experiment under cyclic loading in this paper. Through the four specimens with different gusset-plate’s thickness and bolt spacing, we analyze the effect of the gusset-plate’s thickness and bolt spacing on stiffness, ductility and energy performance. At last we recommend the suitable gusset-plate’s thickness. The results can give a reference to the engineering application of cold-formed steel structure.


Sign in / Sign up

Export Citation Format

Share Document