incremental strain
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jean-Christophe Wrobel-Daveau ◽  
Rodney Barracloughy ◽  
Sarah Laird ◽  
Nick Matthies ◽  
Bilal Saeed ◽  
...  

Abstract Exploration success in fold-and-thrust belts, like the Potwar petroleum province, is impacted by seismic imaging challenges and structural complexity. Success partly relies on the ability to validate subsurface models and model a range of properties, such as reservoir permeability. This is particularly important in the case of tight carbonate reservoirs such as the Eocene Sakesar Formation, where the recovery of economic quantities of hydrocarbons is conditioned by the presence of fracture-enhanced permeability. This requires the application of geological and geophysical modeling techniques to address these challenges, to minimize uncertainty and drive exploration success. The interpretation and structural validation of the Ratana structure presented here allows the proposal of a consistent and robust structural model even in areas of higher uncertainty in the data, such as along faults. The dynamically updatable, watertight, complex 3D structural framework created for the top Sakesar reservoir was used in combination with an assisted fault interpretation algorithm to characterize the fault and fracture pattern. The results showed a higher density of high amplitude fractures on the flanks of the structure rather than along the hinge. These results are supported by the incremental strain modeling based on the kinematic evolution of the structure. Together, this helped to characterize potential fracture corridors in areas of the seismic volume that previously proved challenging for human driven interpretation. Our results allow us to reduce the uncertainty related to the geometrical characteristics of the reservoir and provide insights into potential exploration well targets to maximize chances of success, suggesting that permeability and hydrocarbon flow may be higher at the margins of the Ratana structure, and not at the crest, which was the focus of previous exploration and production efforts.


Author(s):  
Neelima Kandula ◽  
Jessica McBeck ◽  
Benoît Cordonnier ◽  
Jérôme Weiss ◽  
Dag Kristian Dysthe ◽  
...  

AbstractUnderstanding the mechanisms of strain localization leading to brittle failure in reservoir rocks can shed light on geomechanical processes such as porosity and permeability evolution during rock deformation, induced seismicity, fracturing, and subsidence in geological reservoirs. We perform triaxial compression tests on three types of porous reservoir rocks to reveal the local deformation mechanisms that control system-size failure. We deformed cylindrical samples of Adamswiller sandstone (23% porosity), Bentheim sandstone (23% porosity), and Anstrude limestone (20% porosity), using an X-ray transparent triaxial deformation apparatus. This apparatus enables the acquisition of three-dimensional synchrotron X-ray images, under in situ stress conditions. Analysis of the tomograms provide 3D distributions of the microfractures and dilatant pores from which we calculated the evolving macroporosity. Digital volume correlation analysis reveals the dominant strain localization mechanisms by providing the incremental strain components of pairs of tomograms. In the three rock types, damage localized as a single shear band or by the formation of conjugate bands at failure. The porosity evolution closely matches the evolution of the incremental strain components of dilation, contraction, and shear. With increasing confinement, the dominant strain in the sandstones shifts from dilative strain (Bentheim sandstone) to contractive strain (Adamswiller sandstone). Our study also links the formation of compactive shear bands with porosity variations in Anstrude limestone, which is characterized by a complex pore geometry. Scanning electron microscopy images indicate that the microscale mechanisms guiding strain localization are pore collapse and grain crushing in sandstones, and pore collapse, pore-emanated fractures and cataclasis in limestones. Our dynamic X-ray microtomography data brings unique insights on the correlation between the evolutions of rock microstructure, porosity evolution, and macroscopic strain during the approach to brittle failure in reservoir rocks.


Author(s):  
Arash Hassanikhah ◽  
Gerald A. Miller ◽  
Amy B. Cerato

Estimation of crack depths due to desiccation of clayey soils is needed to predict changes in mechanical or hydraulic properties in the cracked layer. Desiccation cracks are associated with increasing suction due to moisture loss accompanied by restrained shrinkage, which results in tensile stresses in near surface soil layers. A simple analytical method is presented to predict crack depths in compacted clayey soil due to changes in matric suction with depth. The model equation is based on the Hookean elastic equation relating incremental strain to incremental stress and incorporates two stress state variables including net normal stress and matric suction. Input to the model includes the tensile strength and elastic parameters, and to complete the prediction of crack depth, the suction change profile of interest is needed. The method validity was investigated by comparing predicted crack depths to those observed in soil compacted in a bench scale apparatus for studying desiccation cracking. Tensile strength and elastic properties were determined from tests conducted on soil during desiccation under approximate uniaxial conditions. Predicted crack depths were obtained based on changes in suction interpreted from water content sensors at various depths in the soil bed and compared favorably to observed desiccation crack depths.


2021 ◽  
Author(s):  
Ronald M. Spelz ◽  
Néstor Ramírez-Zerpa ◽  
Juan Contreras ◽  
Ismael Yarbuh ◽  
Antonio González-Fernández ◽  
...  

<p>The Pescadero Basin Complex (PBC) in the southern Gulf of California comprises three distinctive stretched rhomboid pull-apart basins separated by several short transforms. Multibeam and Autonomous underwater vehicle (AUV) bathymetry data collected at 40-m and 1-m resolution, respectively, combined with the processing and interpretation of three 2-D high-resolution multichannel seismic reflection profiles, were used to characterize the architecture of the entire PBC, as well as the internal structure of the northern Pescadero basin. Detailed mapping and cross-sectional kinematic modeling based on multichannel seismic images of the northern Pescadero basin reveals a highly evolved pull-part geometry, characterized by a well-defined ~1.8 km wide axial graben stretching ~32 km in an NNE-SSW direction. Both finite and incremental strain analyses carried out in this study point out that the PBC developed under sustained transtensional deformation, where the relative motion of the crustal blocks is oblique and divergent to the transforms or principal displacement zones (PDZ's), and subsidence is likely being accommodated by one of more décollement layers located at the bottom of a broad negative flower structure. We also present new geochemical data of lava flows with a N-MORB composition outcropping on the NE segment of the northern Pescadero axial graben, and lava-flow samples of E-MORB composition from an uplifted sediment hill on the western margin of the southern Pescadero basin. MORB samples from the PBC represent the northernmost surface flows known in the Gulf of California, highlighting that the PBC has evolved beyond being a pull-apart complex to having initiated seafloor spreading with new oceanic crust formation in response to the opening of the Gulf of California.</p>


2021 ◽  
Vol 249 ◽  
pp. 10005
Author(s):  
Giuseppina Recchia ◽  
Hongyang Cheng ◽  
Vanessa Magnanimo ◽  
Luigi La Ragione

We investigate localization in granular material with the support of numerical simulations based upon DEM (Distinct Element Method). Localization is associated with a discontinuity in a component of the incremental strain over a plane surface through the condition of the determinant of the acoustic tensor to be zero. DEM simulations are carried out on an aggregate of elastic frictional spheres, initially isotropically compressed and then sheared at constant pressure p0. The components of the stiffness tensor are evaluated numerically in stressed states along the triaxial test and employed to evaluate the acoustic tensor in order to predict localization. This occurs in the pre-peak region, where the aggregate hardens under the circumstance to be incrementally frictionless: it is a regime in which the tangential force does not change as the deformation proceedes and, consequently, the deviatoric stress varies only with the normal component of the contact force.


2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Giuseppina Recchia ◽  
Vanessa Magnanimo ◽  
Hongyang Cheng ◽  
Luigi La Ragione

AbstractIn this work, Discrete Elements Method simulations are carried out to investigate the effective stiffness of an assembly of frictional, elastic spheres under anisotropic loading. Strain probes, following both forward and backward paths, are performed at several anisotropic levels and the corresponding stress is measured. For very small strain perturbations, we retrieve the linear elastic regime where the same response is measured when incremental loading and unloading are applied. Differently, for a greater magnitude of the incremental strain a different stress is measured, depending on the direction of the perturbation. In the case of unloading probes, the behavior stays elastic until non-linearity is reached.Under forward perturbations, the aggregate shows an intermediate inelastic stiffness, in which the main contribution comes from the normal contact forces. That is, when forward incremental probes are applied the behavior of anisotropic aggregates is an incremental frictionless behavior. In this regime we show that contacts roll or slide so the incremental tangential contact forces are zero. Graphical Abstract


2020 ◽  
Vol 26 (4) ◽  
pp. 401-407
Author(s):  
Rui-bin GOU ◽  
Wen-jiao DAN ◽  
Wei-gang ZHANG ◽  
Min YU

An innovative flow model incorporating the mixture hardening law, anisotropic yield function, and incremental strain formulations was elaborated and applied to DP590 ferrite-martensite dual phase steel. To verify the flow model, both the macro/micro stress-strain responses and the forming patterns of DP590 steel with different martentite contents were simulated during the processes of the cup deep-drawing and the unconstrained cylindrical bending to evaluate the influence of martensite content on the mechanical and forming behavior of the steel. It was found that maternsite content has a significant impact on the macro/micromechanical and forming behavior of the steel, i.e., the ferrite and steel effective stresses and the effective macro/micro-strain distribution in the cup. Under the unconstrained cylindrical bending, the simulated effective maximum macro/micro-strains were in good agreement with the calculated results from the mixture law-based model. It was concluded that the Buaschinger effect is the main reason for an 8 % error between the simulated and experimental results. The flow model was proved to predict the macro/micro flow and forming behavior of the dual phase steels with a good accuracy.


2020 ◽  
Vol 221 (3) ◽  
pp. 1856-1872 ◽  
Author(s):  
J McBeck ◽  
Y Ben-Zion ◽  
F Renard

SUMMARY We examine the strain accumulation and localization process throughout 12 triaxial compression experiments on six rock types deformed in an X-ray transparent apparatus. In each experiment, we acquire 50–100 tomograms of rock samples at differential stress steps during loading, revealing the evolving 3-D distribution of X-ray absorption contrasts, indicative of density. Using digital volume correlation (DVC) of pairs of tomograms, we build time-series of 3-D incremental strain tensor fields as the rocks are deformed towards failure. The Pearson correlation coefficients between components of the local incremental strain tensor at each stress step indicate that the correlation strength between pairs of local strain components, including dilation, contraction and shear strain, are moderate-strong in 11 of 12 experiments. In addition, changes in the local strain components from one DVC calculation to the next show differences in the correlations between pairs of strain components. In particular, the correlation of the local changes in dilation and shear strain tends to be stronger than the correlation of changes in dilation-contraction and contraction-shear strain. In 11 of 12 experiments, the most volumetrically frequent mode of strain accommodation includes a synchronized increase in multiple strain components. Early in loading, under lower differential stress, the most frequent strain accumulation mode involves the paired increase in dilation and contraction at neighbouring locations. Under higher differential stress, the most frequent mode is the paired increase in dilation and shear strain. This mode is also the first or second most frequent throughout each complete experiment. Tracking the mean values of the strain components in the sample and the volume of rock that each component occupies reveals fundamental differences in the nature of strain accumulation and localization between the volumetric and shear strain modes. As the dilative strain increases in magnitude throughout loading, it tends to occupy larger volumes within the rock sample and thus delocalizes. In contrast, the increasing shear strain components (left- or right-lateral) do not necessarily occupy larger volumes and so involve localization. Consistent with these evolutions, the correlation length of the dilatational strains tends to increase by the largest amounts of the strain components from lower to higher differential stress. In contrast, the correlation length of the shear strains does not consistently increase or decrease with increasing differential stress.


2019 ◽  
Vol 974 ◽  
pp. 608-613
Author(s):  
Yuriy V. Klochkov ◽  
Anatoliy P. Nikolaev ◽  
Tatiana A. Sobolesvskaya ◽  
Mikhail Yu. Klochkov

Comparative analysis of the use of the defining equations of plasticity theories obtained at the loading step in three ways is performed. In the first method, the relations between strains increments and stresses increments are obtained by differentiating the governing equations of the small elastic-plastic deformations theory between full stresses and strains. In the second method, the authors based on the proportionality hypothesis between the component deviators of strains increments and the component deviators of stresses increments without separating the incremental strain into elastic and plastic parts obtain the determining equations at the loading step. In the third method, the relations between the incremental strain and the stresses increment of the plastic flow theory are used on the basis of the hypothesis about the proportionality of the plastic deformations increments to the components of the stress deviator. Based on the analysis of algorithms for obtaining the constitutive relations and the analysis of the numerical results of the calculation example, preference is given to the second method of obtaining expressions between stress increments and strain increments without separating the latter into elastic and plastic parts.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Roopa Hegde ◽  
Koona Ramji ◽  
Swapna Peravali ◽  
Yallappa Shiralgi ◽  
Gurumurthy Hegde ◽  
...  

Multiwalled carbon nanotubes (MWCNTs) were synthesized by the reduction of ethyl alcohol with sodium borohydride (NaBH4) under a strong basic solvent with the high concentration of sodium hydroxide (NaOH). Nanocomposites of different concentration of MWCNT dispersed in poly(3,4-ethylene dioxythiophene) polymerized with poly(4-styrene sulfonate) (PEDOT:PSS) were prepared and deposited on a flexible polyethylene terephthalate (PET) polymer substrates by the spin coating method. The thin films were characterized for their nanostructure and subsequently evaluated for their piezoresistive response. The films were subjected to an incremental strain from 0 to 6% at speed of 0.2 mm/min. The nanocomposite thin film with 0.1 wt% of MWCNT exhibits the highest gauge factor of 22.8 at 6% strain as well as the highest conductivity of 13.5 S/m. Hence, the fabricated thin film was found to be suitable for piezoresistive flexible strain sensing applications.


Sign in / Sign up

Export Citation Format

Share Document