scholarly journals Free Vibration Analysis of Framed Structures Based on Extended Timoshenko Beam Theory.

2000 ◽  
pp. 127-141
Author(s):  
Masa HAYASHI ◽  
Eiji IWASAKI ◽  
Michio SAITOH ◽  
Jota TOKI
1999 ◽  
Vol 121 (2) ◽  
pp. 256-258 ◽  
Author(s):  
S. Karunendiran ◽  
J. W. Zu

This paper presents an analytical method adopted for the free vibration analysis of a shaft, both ends of which are supported by resilient bearings. The shaft is modeled by Timoshenko beam theory. Based on this model exact frequency equation to calculate complex eigenvalues is derived and presented in complex compact form for the first time. Explicit expressions to compute the corresponding mode shapes are also presented.


2021 ◽  
pp. 108128652110312
Author(s):  
Hooman Danesh ◽  
Mahdi Javanbakht

Beam theories such as the Timoshenko beam theory are in agreement with the elasticity theory. However, due to the different nonlocal averaging processes, they are expected to yield different results in their nonlocal forms. In the present work, the free vibration behavior of nonlocal nanobeams is studied using the nonlocal integral Timoshenko beam theory (NITBT) and two-dimensional nonlocal integral elasticity theory (2D-NIET) with different kernels and their results are compared. A new kernel, termed the compensated two-phase (CTP) kernel, is introduced, which entirely compensates for the boundary effects and does not suffer from the ill-posedness of previous kernels. Using the finite element method, the free vibration analysis is performed for different boundary conditions based on the first three natural frequencies. For both the NITBT and 2D-NIET with both the two-phase (TP) and CTP kernels, the nonlocal parameter has a softening effect on the natural frequencies for all the boundary conditions, without observing the paradoxical behaviors of the nonlocal differential theory. For both theories, the softening effect of the nonlocal parameter is more pronounced for the TP kernel compared to the CTP kernel. The sensitivity of the 2D-NIET to the nonlocal parameter is found to be higher than that of the NITBT. Also, the softening effects for different vibration modes are compared to each other for both theories and both kernels. The obtained results can be extended for various important beam problems with nonlocal effects and help obtain a better understanding of applicable nonlocal theories.


Author(s):  
Valentin Fogang

This study presents an analytical solution to the free vibration analysis of a uniform Timoshenko beam. The Timoshenko beam theory covers cases associated with small deflections based on shear deformation and rotary inertia considerations. A material law combining bending, shear, curvature, and natural frequency is presented. This complete study is based on this material law and closed-form solutions are found. The free vibration response of single-span systems, as well as that of spring-mass systems, is analyzed. Closed-form formulations of matrices expressing the boundary conditions are presented; the natural frequencies are determined by solving the eigenvalue problem. First-order dynamic stiffness matrices in local coordinates are determined. Finally, second-order analysis of beams resting on an elastic Winkler foundation is conducted.


2021 ◽  
Vol 226 ◽  
pp. 108854
Author(s):  
Hanzhe Zhang ◽  
Qin Wu ◽  
Yunqing Liu ◽  
Biao Huang ◽  
Guoyu Wang

Sign in / Sign up

Export Citation Format

Share Document