scholarly journals A STUDY ON IMPACT FATIGUE STRENGTH OF HIGH STRENGTH CONCRETE AND FIBER REINFORCED CONCRETE

1977 ◽  
Vol 1977 (262) ◽  
pp. 143-151
Author(s):  
Syoji AMASAKI ◽  
Toyoki AKASHI
2013 ◽  
Vol 700 ◽  
pp. 140-143 ◽  
Author(s):  
Li Li Huang ◽  
Wei Shi

It is important to enhance the ductility of high strength concrete (HSC), and one possible direction is to use steel fibers reinforced, named steel fiber reinforced high strength concrete (SFRHSC).In this paper, The crack characteristics of steel fiber reinforced concrete is investigated in the SHPB test. The incident wave and transmission wave varying with the time have been obtained by SHPB experiment. The relationship curve for stress and strain of material concrete has also been obtained.


2002 ◽  
Vol 29 (5) ◽  
pp. 742-750 ◽  
Author(s):  
Giuseppe Campione

A mathematical model is developed to express the stress–strain relationships in compression of fiber-reinforced concrete (FRC) columns for both normal- and high-strength concrete, with and without conventional steel reinforcement. This model allows one to determine the maximum strength and strain capacity by determining the effective concrete core of the confining devices at rupture. Analytical expressions are also given for the ultimate load corresponding to the complete formation of the concrete failure plane. The proposed model incorporates the most relevant parameters of confinement, i.e., type of confinement, volumetric ratio, spacing, yielding strength, shape of the member cross section, type of fiber (length, diameter, shape), and fiber volume. The model has been verified against data obtained from concentric compressive tests on concrete specimens reinforced with transverse steel and fibers.Key words: high-strength concrete, fiber-reinforced concrete, lateral reinforcement, stress–strain curves.


Fibers ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 93 ◽  
Author(s):  
Yun ◽  
Lim ◽  
Choi

: This paper investigates the effects of the tensile strength of steel fiber on the mechanical properties of steel fiber-reinforced high-strength concrete. Two levels of steel fiber tensile strength (1100 MPa and 1600 MPa) and two steel fiber contents (0.38% and 0.75%) were used to test the compression, flexure, and direct shear performance of steel fiber-reinforced high-strength concrete specimens. The aspect ratio for the steel fiber was fixed at 80 and the design compressive strength of neat concrete was set at 70 MPa to match that of high-strength concrete. The performance of the steel fiber-reinforced concrete that contained high-strength steel fiber was superior to that which contained normal-strength steel fiber. In terms of flexural performance in particular, the tensile strength of steel fiber can better indicate performance than the steel fiber mixing ratio. In addition, a compression prediction model is proposed to evaluate compression toughness, and the model results are compared. The predictive model can anticipate the behavior after the maximum load.


Author(s):  
Rao Krishna ◽  
Rathish Kumar ◽  
B. Srinivas

Concrete is a versatile material with tremendous applications in civil engineering construction. Structural concrete elements are generally made with concrete having a compressive strength of 20 to 35 MPa. Lately, there is an increase in use of high strength concrete (HSC) in major construction projects such as high-rise buildings, and bridges involving members of different sizes and shapes. The compressive strength of concrete is used as the most basic and important material property in the design of reinforced concrete structures. It has become a problem to use this value as the control specimen sizes and shapes are different from country to country. In India, the characteristic compressive strength is usually measured based on 150 mm cubes [1]. But, the ACI code of practice specifies the design compressive strength based on the standard 150x300 mm cylinders [2]. The use of 100x200 mm cylinders gained more acceptance as the need to test high strength concrete increases [3]. In this context the size and shape of concrete becomes an important parameter for the compressive strength. In view of the significance of compressive strength of concrete and due to the fact that the structural elements of different sizes and shapes are used, it is proposed to investigate the effect of size and shape of the specimen on the compressive strength of concrete. In this work, specimens of plain as well as Glass Fiber Reinforced Concrete (GFRC) specimens are cast in order to carry out a comparative study.


2013 ◽  
Vol 6 (2) ◽  
pp. 21-37
Author(s):  
Emad Yassin Khudhair

In resent years several attempts were undertaken to repair damaged reinforced concrete structures. Studies on the effectiveness of repaired and strengthened reinforced concrete elements which fail primarily due to formation of major flexural cracks are same what limited for normal strength concrete (NSC) and very limited for high strength concrete (HSC). The overall objective of the present work is to investigate the strength and deformation characteristics in flexure of reinforced HSC and NSC beams repaired with either with concrete alone or with fiber reinforced concrete or with Welded Wire Mesh (W.W.M). From the results obtained, it was found that the beams were adequately repaired and the general mode of failure was flexural. The repaired beams had higher strength than the original beams. All repaired beams exhibited significant decrease in deflection than the original beams.


2011 ◽  
Vol 250-253 ◽  
pp. 532-535
Author(s):  
Jun Su ◽  
Jun Lin Tao ◽  
Tang Li ◽  
Yan Yin

The compression tests were carried out to investigate the compression behavior of steel fiber reinforced ultra high strength concrete(SFRUHSC). Cubic and axial compression specimens were tested at room tempreture, in terms of load control. The result shouwed that the compression strength of 150×150×150mm3and 100×100×100mm3 cubic specimens is 108.4MPa and 94.7MPa, while the 100×100×300mm3 axial specimens’ is 73.4MPa. The above data demonstrated that the different size effect from that of strength of steel fiber reinforced concrete(SFRC), namely the strength of 100×100×100mm is larger than that of 150×150×150mm3. Two kinds of compression specimens showed various fracture mode: ductile tension fracture of cubic specimens and the brittle shearing fracture of axial ones. But the steel fibers inside the specimens had been pulled out from the matrix.


2010 ◽  
Vol 163-167 ◽  
pp. 1586-1591
Author(s):  
Jie Lei ◽  
Dan Ying Gao ◽  
Hua Fan

Based on the experiments of 10 model specimens of fiber reinforced high strength concrete three-pile caps with the dimension of 831mm×831mm×831mm, the mechanical behavior and the important factors on the cracking load and ultimate bearing capacity of fiber reinforced high strength concrete three-pile caps were researched. The study indicates that with increasing of concrete strength, the volume fraction of steel fiber, the effective thickness and reinforcement ratio of pile cap, the bearing capacity of three-pile caps improves largely. At the same time the type of steel fiber and steel ratio have remarkable effects on the bearing capacity. The results are valuable for establishing bearing capacity calculation formulas of fiber reinforced high strength concrete three-pile caps and improving “the Technical Specification for fiber Reinforced Concrete Structure.”


Sign in / Sign up

Export Citation Format

Share Document