scholarly journals NUMERICAL SIMULATION OF TIME-DEPENDENT CORRODED SURFACE OF STRUCTURAL STEEL MEMBERS IN BOUNDARY WITH CONCRETE

2006 ◽  
Vol 62 (2) ◽  
pp. 440-453 ◽  
Author(s):  
Shigenobu KAINUMA ◽  
Naofumi HOSOMI
2005 ◽  
pp. 97-114 ◽  
Author(s):  
Shigenobu KAINUMA ◽  
Naofumi HOSOMI ◽  
In-Tae KIM ◽  
Yoshito ITOH

1996 ◽  
Vol 18 (9) ◽  
pp. 659-668 ◽  
Author(s):  
Iraj H.P. Mamaghani ◽  
T. Usami ◽  
E. Mizuno

1993 ◽  
Vol 348 (1-2) ◽  
pp. 1-14 ◽  
Author(s):  
D.J. Gavaghan ◽  
J.S. Rollett ◽  
C.E.W. Hahn

2021 ◽  
Vol 692 (4) ◽  
pp. 042128
Author(s):  
Pingqi Zhao ◽  
Tianlu Ni ◽  
Shumei He ◽  
Fang Huang ◽  
Xiao Liang ◽  
...  

2021 ◽  
Author(s):  
Xiangbiao Wang ◽  
Chun Bao Li ◽  
Ling Zhu

Abstract Ship collision accidents occur from time to time in recent years, and this would cause serious consequences such as casualties, environmental pollution, loss of cargo on board, damage to the ship and its equipment, etc. Therefore, it is of great significance to study the response of ship motion and the mechanism of structural damage during the collision. In this paper, model experiments and numerical simulation are used to study the ship-ship collision. Firstly, the Coupled Eulerian-Lagrangian (CEL) was used to simulate the fluid-structure interaction for predicting structural deformation and ship motion during the normal ship-ship collision. Meanwhile, a series of model tests were carried out to validate the numerical results. The validation presented that the CEL simulation was in good agreement with the model test. However, the CEL simulation could not present the characteristics the time-dependent added mass.


2017 ◽  
Vol 18 (1) ◽  
pp. 216-231 ◽  
Author(s):  
Zuohua Li ◽  
Jingbo He ◽  
Jun Teng ◽  
Qin Huang ◽  
Ying Wang

Absolute stress in structural steel members is an important parameter for the design, construction, and servicing of steel structures. However, it is difficult to measure via traditional approaches to structural health monitoring. The ultrasonic time-of-flight method has been widely studied for monitoring absolute stress by measuring the change in ultrasonic propagation time induced by stress. The time-of-flight of the two separated shear-wave modes induced by birefringence, which is particular to shear waves, is also affected by stress to different degrees. Their synthesis signal amplitude spectrum exhibits a minimum that varies with stress, which makes it a potential approach to evaluating uniaxial stress using the shear-wave amplitude spectrum. In this study, the effect of steel-member stress on the shear-wave amplitude spectrum from the interference of two shear waves produced by birefringence is investigated, and a method of uniaxial absolute stress measurement using shear-wave spectral analysis is proposed. Specifically, a theoretical expression is derived for the shear-wave pulse-echo amplitude spectrum, leading to a formula for evaluating uniaxial absolute stress. Three steel-member specimens are employed to investigate the influence of uniaxial stress on the shear-wave pulse-echo amplitude spectrum. The testing results indicate that the amplitude spectrum changes with stress and that the inverse of the first characteristic frequency in the amplitude spectrum and its corresponding stress exhibit a near-perfect linear relationship. On this basis, the uniaxial absolute stress of steel members loaded by a test machine is measured by the proposed method. Parametric studies are further performed on three groups of steel members made of 65# steel and Q235 steel to investigate the factors that influence the testing results. The results show that the proposed method can measure and monitor steel-members uniaxial absolute stress on the laboratory scale and has potential to be used in practical engineering with specific calibration.


Author(s):  
Doug Garrard ◽  
Milt Davis ◽  
Steve Wehofer ◽  
Gary Cole

The NASA Lewis Research Center (LeRC) and the Arnold Engineering Development Center (AEDC) have developed a closely coupled computer simulation system that provides a one dimensional, high frequency inlet / engine numerical simulation for aircraft propulsion systems. The simulation system, operating under the LeRC-developed Application Portable Parallel Library (APPL), closely coupled a supersonic inlet with a gas turbine engine. The supersonic inlet was modeled using the Large Perturbation Inlet (LAPIN) computer code, and the gas turbine engine was modeled using the Aerodynamic Turbine Engine Code (ATEC). Both LAPIN and ATEC provide a one dimensional, compressible, time dependent flow solution by solving the one dimensional Euler equations for the conservation of mass, momentum, and energy. Source terms are used to model features such as bleed flows, turbomachinery component characteristics, and inlet subsonic spillage while unstarted. High frequency events, such as compressor surge and inlet unstart, can be simulated with a high degree of fidelity. The simulation system was exercised using a supersonic inlet with sixty percent of the supersonic area contraction occurring internally, and a GE J85-13 turbojet engine.


2009 ◽  
Vol 65 (2) ◽  
pp. 440-453 ◽  
Author(s):  
Shigenobu KAINUMA ◽  
Naofumi HOSOMI ◽  
Atsushi GOTO ◽  
Yoshito ITOH

Sign in / Sign up

Export Citation Format

Share Document