TWO STAGE PATCH IMAGE CRACK EXTRACTION BY DEEP LEARNING AND PROPOSAL OF CRACK RATE CALCULATION METHOD

Author(s):  
TOMOYUKI Okuda ◽  
TOMONORI Kubota ◽  
TAKAYUKI Shinohara
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2181
Author(s):  
Rafik Nafkha ◽  
Tomasz Ząbkowski ◽  
Krzysztof Gajowniczek

The electricity tariffs available to customers in Poland depend on the connection voltage level and contracted capacity, which reflect the customer demand profile. Therefore, before connecting to the power grid, each consumer declares the demand for maximum power. This amount, referred to as the contracted capacity, is used by the electricity provider to assign the proper connection type to the power grid, including the size of the security breaker. Maximum power is also the basis for calculating fixed charges for electricity consumption, which is controlled and metered through peak meters. If the peak demand exceeds the contracted capacity, a penalty charge is applied to the exceeded amount, which is up to ten times the basic rate. In this article, we present several solutions for entrepreneurs based on the implementation of two-stage and deep learning approaches to predict maximal load values and the moments of exceeding the contracted capacity in the short term, i.e., up to one month ahead. The forecast is further used to optimize the capacity volume to be contracted in the following month to minimize network charge for exceeding the contracted level. As confirmed experimentally with two datasets, the application of a multiple output forecast artificial neural network model and a genetic algorithm (two-stage approach) for load optimization delivers significant benefits to customers. As an alternative, the same benefit is delivered with a deep learning architecture (hybrid approach) to predict the maximal capacity demands and, simultaneously, to determine the optimal capacity contract.


2020 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Manuel Carranza-García ◽  
Jesús Torres-Mateo ◽  
Pedro Lara-Benítez ◽  
Jorge García-Gutiérrez

Object detection using remote sensing data is a key task of the perception systems of self-driving vehicles. While many generic deep learning architectures have been proposed for this problem, there is little guidance on their suitability when using them in a particular scenario such as autonomous driving. In this work, we aim to assess the performance of existing 2D detection systems on a multi-class problem (vehicles, pedestrians, and cyclists) with images obtained from the on-board camera sensors of a car. We evaluate several one-stage (RetinaNet, FCOS, and YOLOv3) and two-stage (Faster R-CNN) deep learning meta-architectures under different image resolutions and feature extractors (ResNet, ResNeXt, Res2Net, DarkNet, and MobileNet). These models are trained using transfer learning and compared in terms of both precision and efficiency, with special attention to the real-time requirements of this context. For the experimental study, we use the Waymo Open Dataset, which is the largest existing benchmark. Despite the rising popularity of one-stage detectors, our findings show that two-stage detectors still provide the most robust performance. Faster R-CNN models outperform one-stage detectors in accuracy, being also more reliable in the detection of minority classes. Faster R-CNN Res2Net-101 achieves the best speed/accuracy tradeoff but needs lower resolution images to reach real-time speed. Furthermore, the anchor-free FCOS detector is a slightly faster alternative to RetinaNet, with similar precision and lower memory usage.


2021 ◽  
Vol 13 (7) ◽  
pp. 1236
Author(s):  
Yuanjun Shu ◽  
Wei Li ◽  
Menglong Yang ◽  
Peng Cheng ◽  
Songchen Han

Convolutional neural networks (CNNs) have been widely used in change detection of synthetic aperture radar (SAR) images and have been proven to have better precision than traditional methods. A two-stage patch-based deep learning method with a label updating strategy is proposed in this paper. The initial label and mask are generated at the pre-classification stage. Then a two-stage updating strategy is applied to gradually recover changed areas. At the first stage, diversity of training data is gradually restored. The output of the designed CNN network is further processed to generate a new label and a new mask for the following learning iteration. As the diversity of data is ensured after the first stage, pixels within uncertain areas can be easily classified at the second stage. Experiment results on several representative datasets show the effectiveness of our proposed method compared with several existing competitive methods.


2021 ◽  
pp. 1-11
Author(s):  
Tianhong Dai ◽  
Shijie Cong ◽  
Jianping Huang ◽  
Yanwen Zhang ◽  
Xinwang Huang ◽  
...  

In agricultural production, weed removal is an important part of crop cultivation, but inevitably, other plants compete with crops for nutrients. Only by identifying and removing weeds can the quality of the harvest be guaranteed. Therefore, the distinction between weeds and crops is particularly important. Recently, deep learning technology has also been applied to the field of botany, and achieved good results. Convolutional neural networks are widely used in deep learning because of their excellent classification effects. The purpose of this article is to find a new method of plant seedling classification. This method includes two stages: image segmentation and image classification. The first stage is to use the improved U-Net to segment the dataset, and the second stage is to use six classification networks to classify the seedlings of the segmented dataset. The dataset used for the experiment contained 12 different types of plants, namely, 3 crops and 9 weeds. The model was evaluated by the multi-class statistical analysis of accuracy, recall, precision, and F1-score. The results show that the two-stage classification method combining the improved U-Net segmentation network and the classification network was more conducive to the classification of plant seedlings, and the classification accuracy reaches 97.7%.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 41770-41781 ◽  
Author(s):  
Catherine Sandoval ◽  
Elena Pirogova ◽  
Margaret Lech

2021 ◽  
Vol 15 ◽  
Author(s):  
Yudan Ren ◽  
Shuhan Xu ◽  
Zeyang Tao ◽  
Limei Song ◽  
Xiaowei He

Naturalistic functional magnetic resonance imaging (NfMRI) has become an effective tool to study brain functional activities in real-life context, which reduces the anxiety or boredom due to difficult or repetitive tasks and avoids the problem of unreliable collection of brain activity caused by the subjects’ microsleeps during resting state. Recent studies have made efforts on characterizing the brain’s hierarchical organizations from fMRI data by various deep learning models. However, most of those models have ignored the properties of group-wise consistency and inter-subject difference in brain function under naturalistic paradigm. Another critical issue is how to determine the optimal neural architecture of deep learning models, as manual design of neural architecture is time-consuming and less reliable. To tackle these problems, we proposed a two-stage deep belief network (DBN) with neural architecture search (NAS) combined framework (two-stage NAS-DBN) to model both the group-consistent and individual-specific naturalistic functional brain networks (FBNs), which reflected the hierarchical organization of brain function and the nature of brain functional activities under naturalistic paradigm. Moreover, the test-retest reliability and spatial overlap rate of the FBNs identified by our model reveal better performance than that of widely used traditional methods. In general, our model provides a promising method for characterizing hierarchical spatiotemporal features under the natural paradigm.


Author(s):  
Pei Jiang ◽  
Shiwen He ◽  
Hufei Yu ◽  
Yaoxue Zhang

2021 ◽  
Author(s):  
JunHua Liao ◽  
LunXin Liu ◽  
HaiHan Duan ◽  
YunZhi Huang ◽  
LiangXue Zhou ◽  
...  

BACKGROUND It is hard to distinguish cerebral aneurysm from overlap vessels based on the 2D DSA images, for its lack the spatial information. OBJECTIVE The aim of this study is to construct a deep learning diagnostic system to improve the ability of detecting the PCoA aneurysm on 2D-DSA images and validate the efficiency of deep learning diagnostic system in 2D-DSA aneurysm detecting. METHODS We proposed a two stage detecting system. First, we established the regional localization stage (RLS) to automatically locate specific detection region of raw 2D-DSA sequences. And then, in the intracranial aneurysm detection stage (IADS) ,we build three different frames, RetinaNet, RetinaNet+LSTM, Bi-input+RetinaNet+LSTM, to detect the aneurysms. Each of the frame had fivefold cross-validation scheme. The area under curve (AUC), the receiver operating characteristic (ROC) curve, and mean average precision (mAP) were used to validate the efficiency of different frames. The sensitivity, specificity and accuracy were used to identify the ability of different frames. RESULTS 255 patients with PCoA aneurysms and 20 patients without aneurysm were included in this study. The best results of AUC of the RetinaNet, RetinaNet+LSTM, and Bi-input+RetinaNet+LSTM were 0.95, 0.96, and 0.97, respectively. The sensitivity of the RetinaNet, RetinaNet+LSTM, and Bi-input+RetinaNet+LSTM were 81.65% (59.40% to 94.76%), 87.91% (64.24% to 98.27%), 84.50% (69.57% to 93.97%), respectively. The specificity of the RetinaNet, RetinaNet+LSTM, and Bi-input+RetinaNet+LSTM were 88.89% (66.73% to 98.41%), 88.12% (66.06% to 98.08%), and 88.50% (74.44% to 96.39%), respectively. The accuracy of the RetinaNet, RetinaNet+LSTM, and Bi-input+RetinaNet+LSTM were 92.71% (71.29% to 99.54%), 89.42% (68.13% to 98.49%), and 91.00% (77.63% to 97.72%), respectively. CONCLUSIONS Two stage aneurysm detecting system can reduce time cost and the computation load. According to our results, more spatial and temporal information can help improve the performance of the frames, so that Bi-input+RetinaNet+LSTM has the best performance compared to other frames. And our study can demonstrate that our system was feasible to assist doctor to detect intracranial aneurysm on 2D-DSA images.


Sign in / Sign up

Export Citation Format

Share Document