SIMPLE DIAGNOSIS METHOD OF ROAD SURFACE ROUGHNESS BY SVM USING ROAD SURFACE PROFILE AND STANDARD DEVIATION AS EXPLANATORY VARIABLES

Author(s):  
YILIGUOQI ◽  
Shigeyuki MURAKAMI ◽  
ARONG ◽  
Hiroshi SASAKI
1983 ◽  
Vol 105 (4) ◽  
pp. 526-531 ◽  
Author(s):  
V. K. Jain ◽  
S. Bahadur

The variation in the surface topographical parameters for the case of sliding between high density polyethylene and poly(vinyl chloride) pin ends and a steel disk periphery was investigated. Sliding surface profile ordinate data were obtained at 2μm intervals using a data acquisition system, both along and perpendicular to the direction of sliding. A number of surface roughness parameters, viz., the r.m.s. and c.l.a. roughness, the slope, density, and radius of curvature of asperities, the standard deviation and distribution of profile ordinates, slopes, radii of curvatures and heights of asperities were calculated using a Fortran IV computer program. The analysis showed that the surface parameters undergo a marked variation during the early part of sliding, but the variation is statistically insignificant during the later part. It was found that the standard deviation of peak heights can be approximated by the r.m.s. surface roughness.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Feng ◽  
Xinjie Zhang ◽  
Konghui Guo ◽  
Fangwu Ma ◽  
Hamid Reza Karimi

The road surface roughness is the main source of kinematic excitation of a moving vehicle, which has an important influence on vehicle performance. In recent decades, random road models have been widely studied, and a four-wheel random road time domain model is usually generated based on the correlation of the four-wheel input, in which a coherence function is used to describe the coherence of the road input between the left and right wheels usually. However, during our research, there are some conditions that show that the road PSD (power spectral density) of one wheel is smaller than the other one on the same axle. Actually, it is caused by the uncorrelation between the left- and right-wheel road surface roughness. Hence, a frequency compensation algorithm is proposed to correct the deviation of the PSD of the road input between two wheels on the same axle, and it is installed in a 7-DOF vehicle dynamic study. The simulation result demonstrates the applicability of the proposed algorithm such that two-wheel road input deviation compensation has an important influence on vehicle performances, and it can be used for a control system installed in the vehicle to compensate road roughness for damper tuning in the future.


Sign in / Sign up

Export Citation Format

Share Document