scholarly journals CHANGE INHIBITION EFFECT OF SEX-SPECIFIC GENES EXPRESSION IN THE MEDAKA WITH NANOFILTRATION AND REVERSE OSMOSIS MEMBRANE FILTRATION

Author(s):  
Tomokazu KITAMURA ◽  
Hiroyuki MANO ◽  
Seiichiro OKAMOTO ◽  
Yutaka SUZUKI ◽  
Lee SANG JUNG ◽  
...  
2016 ◽  
Vol 94 ◽  
pp. 42-51 ◽  
Author(s):  
Monique H. Vingerhoeds ◽  
Mariska A. Nijenhuis-de Vries ◽  
Nienke Ruepert ◽  
Harmen van der Laan ◽  
Wender L.P. Bredie ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1833
Author(s):  
Joanna Marszałek ◽  
Renata Żyłła

The aim of the work was to purify model textile wastewater (MTW) using a two-stage membrane filtration process comprising nanofiltration (NF) and reverse osmosis (RO). For this purpose, a nanofiltration membrane TFC-SR3 (KOCH) and reverse osmosis membrane AG (GE Osmonics) were used. Each model wastewater contained a selected surfactant. The greatest decrease in flux in the initial phase of the process occurred for the detergents based on fatty-acid condensation products. An evident decrease in performance was observed with polysiloxane-based surfactants. No fouling effect and high flux values were observed for the wastewater containing a nonionic surfactant based on fatty alcohol ethoxylates. During RO, a significantly higher flux and lower resistance were observed for the feed that originally contained the anionic agent. For the MTW containing the nonionic surfactant, the conductivity reduction ranged from 84% to 92% depending on the concentrate ratio at the consecutive stages of RO. After treatment, the purified wastewater was reused in the process of dyeing cellulose fibers with reactive dyes. The research confirmed that textiles dyed with the use of RO filtrates did not differ in quality of dyeing from those dyed in pure deionized water.


Author(s):  
H. K. Plummer ◽  
E. Eichen ◽  
C. D. Melvin

Much of the work reported in the literature on cellulose acetate reverse osmosis membranes has raised new and important questions with regard to the dense or “active” layer of these membranes. Several thickness values and structures have been attributed to the dense layer. To ensure the correct interpretation of the cellulose acetate structure thirteen different preparative techniques have been used in this investigation. These thirteen methods included various combinations of water substitution, freeze drying, freeze sectioning, fracturing, embedding, and microtomy techniques with both transmission and scanning electron microscope observations.It was observed that several factors can cause a distortion of the structure during sample preparation. The most obvious problem of water removal can cause swelling, shrinking, and folds. Improper removal of embedding materials, when used, can cause a loss of electron image contrast and, or structure which could hinder interpretation.


2021 ◽  
Vol 196 ◽  
pp. 117006 ◽  
Author(s):  
Nicholas W. Bristow ◽  
Sarah J. Vogt ◽  
Szilard S. Bucs ◽  
Johannes S. Vrouwenvelder ◽  
Michael L. Johns ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 213
Author(s):  
Reema Mushtaq ◽  
Muhammad Asad Abbas ◽  
Shehla Mushtaq ◽  
Nasir M. Ahmad ◽  
Niaz Ali Khan ◽  
...  

A commercial thin film composite (TFC) polyamide (PA) reverse osmosis membrane was grafted with 3-sulfopropyl methacrylate potassium (SPMK) to produce PA-g-SPMK by atom transfer radical polymerization (ATRP). The grafting of PA was done at varied concentrations of SPMK, and its effect on the surface composition and morphology was studied by Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), optical profilometry, and contact angle analysis. The grafting of hydrophilic ionically charged PSPMK polymer brushes having acrylate and sulfonate groups resulted in enhanced hydrophilicity rendering a reduction of contact angle from 58° of pristine membrane sample labeled as MH0 to 10° for a modified membrane sample labeled as MH3. Due to the increased hydrophilicity, the flux rate rises from 57.1 L m−2 h−1 to 71.2 L m−2 h−1, and 99% resistance against microbial adhesion (Escherichia coli and Staphylococcus aureus) was obtained for MH3 after modification


Sign in / Sign up

Export Citation Format

Share Document