scholarly journals UNIT INNER FRICTION RESISTANCE AND UNIT RESISTANCE OF ACTUAL PART OF OPEN-ENDED PILES BASED ON THE DOUBLE-PIPE MODEL PILE EXPERIMENT

Author(s):  
Hiroyoshi YAMAZAKI ◽  
Yoshiaki KIKUCHI ◽  
Shohei NODA ◽  
Mitsuru SAOTOME ◽  
Mami NONAKA
2019 ◽  
Vol 75 (2) ◽  
pp. I_462-I_467
Author(s):  
Hiroyoshi YAMAZAKI ◽  
Yoshiaki KIKUCHI ◽  
Shohei NODA ◽  
Kazuki SAKIMOTO ◽  
Hiroki MATSUOKA

Author(s):  
Masoud Mojtahed ◽  
Nganh Le ◽  
Jerry Wayne DeSoto

The Exhaust Manifold is an increasingly important component of industrial turbocharged diesel engines. It can be a key factor to increase the efficiency of any engine, in this case a power plant diesel engine. Analysis of the various structural and thermal loading of the liquid-cooled manifolds is of vital importance to increase the components efficiency and overall engine performance. In this analysis, problems such as thermal stress issues causing manifold failure are identified and redesigned to meet performance requirements and environmental regulations. These manifolds are of complicated shapes and contain many weld joints to attach several integral parts. The weld regions are identified to be sensitive to thermal stresses and most likely prone to failure. The welds were added to the model in ANSYS® Workbench. Computational Fluid Dynamics (Fluent) and Finite Element Analysis (FEA) were used to analyze the welded model. The main outcome was to understand the welds behavior using the ANSYS software and its powerful tools and to determine whether the areas containing welds are likely to fail under the given conditions. A simple double pipe model was also created and congruently analyzed to validate the results and the techniques used in analyzing the manifold model.


2019 ◽  
Vol 11 (01) ◽  
pp. 1-7
Author(s):  
Roni Kusnowo ◽  
Kus Hanaldi

Animal feed knife is a tool that serves to cut and chop animal feed consisting of grass as the main ingredient with additives such as bran, herbs, centrate, cassava, tofu pulp and others. Therefore, as a cutting tool must have the properties of friction resistance, impact resistance, and have good sharpness, so that the material chosen is Ni-Hard 1. The use of centrifugal casting method was chosen because it has the advantage of being able to make castings with relatively thin thickness this is due to the influence of the centrifugal force on the distribution of metal liquids throughout the cavity in the mold. Case study in this study is the use of centrifugal casting methods as an alternative to gravity casting methods to overcome defects of misruns. This research was conducted to investigate the effect of speed on the formation of castings products. The method that was carried out began with a literature study on centrifugal casting, and continued by determining the material, the temperature of the cast is in the range 1250ºC - 1300ºC, and the type of mold. The next step is to do work drawings, pattern making, mold making, casting processes, fettling processes, and analysis. With variations in speed of 200 rpm, 300 rpm and 400 rpm, it can be seen the optimal speed for making this product. The results of this study obtained optimal speed at a speed of 300 rpm to make good quality of animal feed knife products.


Alloy Digest ◽  
2003 ◽  
Vol 52 (10) ◽  

Abstract Kaiser Aluminum alloy 4026 has high strength and good wear resistance, as well as galling resistance. It was developed for sliding friction resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating. Filing Code: AL-385. Producer or source: Tennalum, A Division of Kaiser Aluminum.


2017 ◽  
pp. 1
Author(s):  
Elmuataz Moftah ◽  
Ahmad Abdelaly ◽  
Ali Gebriel ◽  
Wahbe Pohwess

2021 ◽  
Vol 11 (13) ◽  
pp. 5954
Author(s):  
Muhammad Ishaq ◽  
Amjad Ali ◽  
Muhammad Amjad ◽  
Khalid Saifullah Syed ◽  
Zafar Iqbal

Heat transfer enhancement in heat exchangers results in thermal efficiency and energy saving. In double-pipe heat exchangers (DPHEs), extended or augmented fins in the annulus of the two concentric pipes, i.e., at the outer surface of the inner pipe, are used to extend the surface of contact for enhancing heat transfer. In this article, an innovative diamond-shaped design of extended fins is proposed for DPHEs. This type of fin is considered for the first time in the design of DPHEs. The triangular-shaped and rectangular-shaped fin designs of DPHE, available in the literature, can be recovered as special cases of the proposed design. An h-adaptive finite element method is employed for the solution of the governing equations. The results are computed for various performance measures against the emerging parameters. The results dictate that the optimal configurations of the diamond-shaped fins in the DPHE for an enhanced heat transfer are recommended as follows: If around 4–6, 8–12, or 16–32 fins are to be placed in the DPHE, then the height of the fins should be 20%, 80%, or 100%, respectively, of the annulus width. If frictional loss of heat is also to be considered, then for fin-heights of 20–80% and 100% of the annulus width, the placement of 4 and 8 diamond-shaped fins, respectively, is recommended for an enhanced heat transfer. These recommendations are for the radii ratio (i.e., the ratio of the inner pipe radius to that of the outer pipe) of 0.25. The recommendations are be modified if the radii ratio is altered.


Sign in / Sign up

Export Citation Format

Share Document