scholarly journals Study on the energy consumption and CO2 emission caused by inter-regional freight transportation in Japan.

1994 ◽  
Vol 22 ◽  
pp. 352-358
Author(s):  
Tomomi ITOH ◽  
Hidefumi IMURA
2020 ◽  
Vol 13 (1) ◽  
pp. 158
Author(s):  
Sishen Wang ◽  
Hao Wang ◽  
Pengyu Xie ◽  
Xiaodan Chen

Low-carbon transport system is desired for sustainable cities. The study aims to compare carbon footprint of two transportation modes in campus transit, bus and bike-share systems, using life-cycle assessment (LCA). A case study was conducted for the four-campus (College Ave, Cook/Douglass, Busch, Livingston) transit system at Rutgers University (New Brunswick, NJ). The life-cycle of two systems were disaggregated into four stages, namely, raw material acquisition and manufacture, transportation, operation and maintenance, and end-of-life. Three uncertain factors—fossil fuel type, number of bikes provided, and bus ridership—were set as variables for sensitivity analysis. Normalization method was used in two impact categories to analyze and compare environmental impacts. The results show that the majority of CO2 emission and energy consumption comes from the raw material stage (extraction and upstream production) of the bike-share system and the operation stage of the campus bus system. The CO2 emission and energy consumption of the current campus bus system are 46 and 13 times of that of the proposed bike-share system, respectively. Three uncertain factors can influence the results: (1) biodiesel can significantly reduce CO2 emission and energy consumption of the current campus bus system; (2) the increased number of bikes increases CO2 emission of the bike-share system; (3) the increase of bus ridership may result in similar impact between two systems. Finally, an alternative hybrid transit system is proposed that uses campus buses to connect four campuses and creates a bike-share system to satisfy travel demands within each campus. The hybrid system reaches the most environmentally friendly state when 70% passenger-miles provided by campus bus and 30% by bike-share system. Further research is needed to consider the uncertainty of biking behavior and travel choice in LCA. Applicable recommendations include increasing ridership of campus buses and building a bike-share in campus to support the current campus bus system. Other strategies such as increasing parking fees and improving biking environment can also be implemented to reduce automobile usage and encourage biking behavior.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1161
Author(s):  
Maedeh Rahnama Mobarakeh ◽  
Miguel Santos Silva ◽  
Thomas Kienberger

The pulp and paper (P&P) sector is a dynamic manufacturing industry and plays an essential role in the Austrian economy. However, the sector, which consumes about 20 TWh of final energy, is responsible for 7% of Austria’s industrial CO2 emissions. This study, intending to assess the potential for improving energy efficiency and reducing emissions in the Austrian context in the P&P sector, uses a bottom-up approach model. The model is applied to analyze the energy consumption (heat and electricity) and CO2 emissions in the main processes, related to the P&P production from virgin or recycled fibers. Afterward, technological options to reduce energy consumption and fossil CO2 emissions for P&P production are investigated, and various low-carbon technologies are applied to the model. For each of the selected technologies, the potential of emission reduction and energy savings up to 2050 is estimated. Finally, a series of low-carbon technology-based scenarios are developed and evaluated. These scenarios’ content is based on the improvement potential associated with the various processes of different paper grades. The results reveal that the investigated technologies applied in the production process (chemical pulping and paper drying) have a minor impact on CO2 emission reduction (maximum 10% due to applying an impulse dryer). In contrast, steam supply electrification, by replacing fossil fuel boilers with direct heat supply (such as commercial electric boilers or heat pumps), enables reducing emissions by up to 75%. This means that the goal of 100% CO2 emission reduction by 2050 cannot be reached with one method alone. Consequently, a combination of technologies, particularly with the electrification of the steam supply, along with the use of carbon-free electricity generated by renewable energy, appears to be essential.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6611
Author(s):  
Kazui Yoshida ◽  
Hom B. Rijal ◽  
Kazuaki Bohgaki ◽  
Ayako Mikami ◽  
Hiroto Abe

A residential cogeneration system (CGS) is highlighted because of its efficient energy usage on both the supplier and consumer sides. It generates electricity and heat simultaneously; however, there is insufficient information on the efficiency according to the condition of usage. In this study, we analysed the performance data measured by the home energy management system (HEMS) and the lifestyle data of residents in a condominium of 356 flats where fuel cell CGS was installed in each flat. The electricity generated by CGS contributed to an approximately 12% reduction in primary energy consumption and CO2 emission, and the rate of generation by the CGS in the electric power demand (i.e., contribution rate) was approximately 38%. The electricity generation was mainly affected by the use of electricity up to 4 MWh/household/year. Gas or water use also impacted electric power generation, with water use as the primary factor affecting the contribution rate. Electric power generation changes monthly, mainly based on the water temperature. From these results, we confirmed that a CGS has substantial potential to reduce energy consumption and CO2 emission in condominiums. Thus, it is recommended for installation of fuel cell CGS in existing and new buildings to contribute to the energy-saving target of the Japanese Government in the residential sector.


2022 ◽  
Author(s):  
Dajie ZUO ◽  
Qichen Liang ◽  
Shuguang Zhan ◽  
Wencheng Huang ◽  
Shenglan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document