scholarly journals STUDY ON THE FLOOD AND DROUGHT RISK ASSESSMENT OF GLOBAL WARMING BY HIGH RESOLUTION GENERAL CIRCULATION MODEL, IN SHIKOKU REGION

2008 ◽  
Vol 52 ◽  
pp. 529-534
Author(s):  
Kazunori WADA ◽  
Shoji KUSUNOKI
2008 ◽  
Vol 21 (20) ◽  
pp. 5204-5228 ◽  
Author(s):  
S. Gualdi ◽  
E. Scoccimarro ◽  
A. Navarra

Abstract This study investigates the possible changes that greenhouse global warming might generate in the characteristics of tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the twentieth century with observations. The model appears to be able to simulate tropical cyclone–like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation, and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link TC occurrence with large-scale circulation. The results from the climate scenarios reveal a substantial general reduction of TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical western North Pacific (WNP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with reduced convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Finally, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both hemispheres, notwithstanding the overall warming of the tropical upper ocean and the expansion poleward of warm SSTs.


2017 ◽  
Vol 50 (7-8) ◽  
pp. 2537-2552 ◽  
Author(s):  
Mark S. Williamson ◽  
Mat Collins ◽  
Sybren S. Drijfhout ◽  
Ron Kahana ◽  
Jennifer V. Mecking ◽  
...  

1970 ◽  
Vol 9 (1-2) ◽  
pp. 143-154 ◽  
Author(s):  
MA Rouf ◽  
MK Uddin ◽  
SK Debsarma ◽  
M Mizanur Rahman

The past, present and future climatic pattern (temperature and rainfall) of northwestern and southwestern part of Bangladesh was assessed based on the High Resolution Atmospheric-Ocean General Circulation Model (AOGCM) using the present rainfall and temperature data of the Bangladesh Meteorological Department (BMD). Climatology in Bangladesh is derived from 20 km mesh MRI-AGCM (Atmospheric General Circulation Model) calibrated with reference to the observed data for the period of 1979-2006. Then, projections for rainfall and temperature are made for near future (2015-2034) and future (2075-99). Two disaster prone areas (i) northwestern part (Shapahar & Porsha) and (ii) southwestern part (Kalapara & Amtoli) were selected as the study areas. AOGCM model was run for Bangladesh and also for study areas separately. The present mean temperature for Bangladesh was found to rise from the past, rises slightly, but in near future and future the rate of mean temperature rise is projected to be much more than the present rate (increase up to 4.34 °C/100 years), the rate is projected to be 5.39 °C/100 years in case of Shapahar and Porsha a while 4.37 °C/100 years in case of Kalapara and Amtoli. The present, near future and future average rainfall of Bangladesh appeared to fluctuate, but have shown a decreasing trend (decreases up to 1.96 mm/100 years). The mean average rainfall of Shapahar and Porsha presently decreases very slowly (not significant), but in near future and future will decrease slowly (0.66mm/100 years). In case of Kalapara, the average rainfall appears to decrease presently, near future and future will decrease up to 3.62 mm/100 years. The average rainfall of Amtoli appears to decrease @ 1.92mm/100 years but in near future appears to increase slightly and again decrease @ 3.27mm/100years in future. Keywords: Atmosphere-Ocean General Circulation Model (AOGCM); climatology; simulation; temperature; rainfall DOI: http://dx.doi.org/10.3329/agric.v9i1-2.9489 The Agriculturists 2011; 9(1&2): 143-154


Sign in / Sign up

Export Citation Format

Share Document