scholarly journals Heat Storage and Heat Extraction from Salt-gradient Solar Pond

1983 ◽  
Vol 27 ◽  
pp. 139-144
2010 ◽  
Vol 1 (4) ◽  
pp. 246-250 ◽  
Author(s):  
F. Suárez ◽  
A. E. Childress ◽  
S. W. Tyler

A salt-gradient solar pond is a low-cost, large-scale solar collector with integrated storage that can be used as a source of energy in low-grade-heat thermal desalination systems. This work presents the thermal evolution of an experimental solar pond for both the maturation and heat extraction time periods. The temperature profile was measured every 1.1 cm using a vertical high-resolution distributed temperature sensing (DTS) system, with a temperature resolution of 0.04ºC. Temperatures of 34 and 45ºC were achieved in the bottom of the pond when the lights were on for 12 and 24 hours per day, respectively. Heat was extracted at a rate of 139 W from the solar pond, which corresponded to an efficiency of 29%. Stratification and mixing were clearly observed inside the solar pond using the vertical high-resolution DTS system.


2017 ◽  
Vol 132 ◽  
pp. 316-326 ◽  
Author(s):  
Mohamad Aramesh ◽  
Fathollah Pourfayaz ◽  
Alibakhsh Kasaeian

1986 ◽  
Author(s):  
J. Hull ◽  
A. Scranton ◽  
J. Mehta ◽  
S. Cho ◽  
K. Kasza

2021 ◽  
Vol 43 ◽  
pp. 59-71
Author(s):  
Devendra B. Sadaphale ◽  
S.P. Shekhawat ◽  
Vijay R. Diware

Salt gradient solar ponds are to be designed for thermal efficiency and salinity profile stability. As the salt flux moves upward in the pond, the gradient gets destabilized. This is counteracted by intrusion of salt at different levels as and when required. The density of salt is highest at the bottom and minimum at the top. Hence the destabilization effect is more at top that is at the interface of upper convective zone and non-convective zone (NCZ). In order to keep the interface stable, it is desirable to provide a higher slope of salt gradient near it. However, throughout the non-convective zone, it is not feasible to provide higher slope due to solubility limitations. Hence Husain et al (2012) to divide the NCZ into two parts. The top few centimeters may be given a higher slope and the rest of the zone may be given mild slope as usual. Husain et al (2012) have given analysis for the same and found it to be feasible. However, the experimental feasibility of the same needs to be verified. The present work has done an attempt for the same. In this study, an insulated solar pond with a surface area of 1.40 m2and a depth of 1.14 m is built at the SSBT’s College of Engineering and Technology, Jalgaon in the Maharashtra State (India). The three salty water zones (upper convective, non-convective and heat storage) were formed by filling the pond with salty water of various densities. 6 Thermocouples (type Pt100A) (C+0.2%) were used to measure the temperature profile within the pond. A maximum temperature of 47°C was recorded in the heat storage zone in time span considered for study. The results obtained from experimentation is verified with the concept suggested by Hussain et al (2012) it has been found that they are in a good agreement. The influence of varying the thicknesses of the zones present in a salinity gradient solar pond on the temperatures of the upper convective zone (UCZ) and the lower convective zone (LCZ) is investigated. Also, it is found that by adding the additional non convective zone of 50 mm thickness above the UCZ the heat collection capacity of the LCZ is increased noticeably. The study finds that thickness variation of the zones within the pond is a practical feasibility. The system worked for the entire experimental duration effectively without failure.


2018 ◽  
Vol 37 (5) ◽  
pp. 1502-1515
Author(s):  
Qi Wu ◽  
Hua Wang ◽  
Shukuan Xie ◽  
Liugang Zhang ◽  
Jie Wang ◽  
...  

2020 ◽  
pp. 014459872097416
Author(s):  
Hua Wang ◽  
Ma Xiaomeng ◽  
Zhang Liugang ◽  
Xinmin Zhang ◽  
Yanyang Mei ◽  
...  

In this paper, the effect of adding the composite PCM (Phase Change Material) heat storage capsules to the heat storage layer of the salt gradient solar pond on the thermal performance of the solar pond was studied numerically and experimentally. Based on the program-controlled temperature simulation of the solar pond experimental platform, the effect of adding the composite PCM (48–50°C and 58–60°C melting point paraffin) heat storage capsules on the solar pond temperature and stability was studied, and a numerical simulation model was established to be compared by the experimental results. The results showed that the experimental temperature was consistent with the simulation results; the solar pond with PCM capsules had a smaller temperature change range than the conventional solar pond during the phase change process, but it did not have such effect in the non-phase transition process; in terms of flow, the addition of the PCM phase change units could reduce the flow rate of the heat storage zone, and the PCM with a larger latent heat had a more obvious suppression effect on the flow. Therefore, within a certain temperature range, adding PCM units to the solar pond had a positive effect on maintaining the stable temperature and stability of solar pond.


1983 ◽  
Vol 109 (3) ◽  
pp. 152-164 ◽  
Author(s):  
Koichi Kinose

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Abhishek Saxena ◽  
Varun Goel

A solar pond has been fabricated to analyze the thermal behavior of it, in the climatic conditions of Moradabad, Uttar Pradesh. Sodium chloride (NaCl) has been used to form a salt gradient for better performance, and a dark-colored (blackened) rigid surface bottom with 1 mm irregularities has been considered for trapping the heat in a good amount. A solar pond with a surface area of 2.56 m2and a depth of 1 m has been filled with salty water of various densities to form three salty water zones (upper convective, nonconvective, and heat storage). A few investigations have been carried out to evaluate the thermal efficiencies of three different zones of the solar pond. An attempt is also made to improve the thermal performance of the salt gradient solar pond.


Sign in / Sign up

Export Citation Format

Share Document