Current Status of Molecular Imaging of Infection: A Primer

2019 ◽  
Vol 213 (2) ◽  
pp. 300-308 ◽  
Author(s):  
Ila Sethi ◽  
Yoram S. Baum ◽  
Erin E. Grady
2021 ◽  
Vol 22 (14) ◽  
pp. 7348
Author(s):  
Olivia Wegrzyniak ◽  
Maria Rosestedt ◽  
Olof Eriksson

Pathological fibrosis of the liver is a landmark feature in chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Diagnosis and assessment of progress or treatment efficacy today requires biopsy of the liver, which is a challenge in, e.g., longitudinal interventional studies. Molecular imaging techniques such as positron emission tomography (PET) have the potential to enable minimally invasive assessment of liver fibrosis. This review will summarize and discuss the current status of the development of innovative imaging markers for processes relevant for fibrogenesis in liver, e.g., certain immune cells, activated fibroblasts, and collagen depositions.


2009 ◽  
Vol 2 ◽  
pp. CGM.S2814 ◽  
Author(s):  
Yunan Yang ◽  
Hao Hong ◽  
Yin Zhang ◽  
Weibo Cai

Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET) has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction.


2020 ◽  
Vol 6 (2) ◽  
pp. 73 ◽  
Author(s):  
Milos Petrik ◽  
Joachim Pfister ◽  
Matthias Misslinger ◽  
Clemens Decristoforo ◽  
Hubertus Haas

Invasive fungal infections such as aspergillosis are life-threatening diseases mainly affecting immuno-compromised patients. The diagnosis of fungal infections is difficult, lacking specificity and sensitivity. This review covers findings on the preclinical use of siderophores for the molecular imaging of infections. Siderophores are low molecular mass chelators produced by bacteria and fungi to scavenge the essential metal iron. Replacing iron in siderophores by radionuclides such as gallium-68 allowed the targeted imaging of infection by positron emission tomography (PET). The proof of principle was the imaging of pulmonary Aspergillus fumigatus infection using [68Ga]Ga-triacetylfusarinine C. Recently, this approach was expanded to imaging of bacterial infections, i.e., with Pseudomonas aeruginosa. Moreover, the conjugation of siderophores and fluorescent dyes enabled the generation of hybrid imaging compounds, allowing the combination of PET and optical imaging. Nevertheless, the high potential of these imaging probes still awaits translation into clinics.


Sign in / Sign up

Export Citation Format

Share Document