scholarly journals Siderophore-Based Molecular Imaging of Fungal and Bacterial Infections—Current Status and Future Perspectives

2020 ◽  
Vol 6 (2) ◽  
pp. 73 ◽  
Author(s):  
Milos Petrik ◽  
Joachim Pfister ◽  
Matthias Misslinger ◽  
Clemens Decristoforo ◽  
Hubertus Haas

Invasive fungal infections such as aspergillosis are life-threatening diseases mainly affecting immuno-compromised patients. The diagnosis of fungal infections is difficult, lacking specificity and sensitivity. This review covers findings on the preclinical use of siderophores for the molecular imaging of infections. Siderophores are low molecular mass chelators produced by bacteria and fungi to scavenge the essential metal iron. Replacing iron in siderophores by radionuclides such as gallium-68 allowed the targeted imaging of infection by positron emission tomography (PET). The proof of principle was the imaging of pulmonary Aspergillus fumigatus infection using [68Ga]Ga-triacetylfusarinine C. Recently, this approach was expanded to imaging of bacterial infections, i.e., with Pseudomonas aeruginosa. Moreover, the conjugation of siderophores and fluorescent dyes enabled the generation of hybrid imaging compounds, allowing the combination of PET and optical imaging. Nevertheless, the high potential of these imaging probes still awaits translation into clinics.

2021 ◽  
Vol 22 (14) ◽  
pp. 7348
Author(s):  
Olivia Wegrzyniak ◽  
Maria Rosestedt ◽  
Olof Eriksson

Pathological fibrosis of the liver is a landmark feature in chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Diagnosis and assessment of progress or treatment efficacy today requires biopsy of the liver, which is a challenge in, e.g., longitudinal interventional studies. Molecular imaging techniques such as positron emission tomography (PET) have the potential to enable minimally invasive assessment of liver fibrosis. This review will summarize and discuss the current status of the development of innovative imaging markers for processes relevant for fibrogenesis in liver, e.g., certain immune cells, activated fibroblasts, and collagen depositions.


2012 ◽  
Vol 20 ◽  
pp. 21-31 ◽  
Author(s):  
Quinn K.T. Ng ◽  
Tatiana Segura ◽  
Anat Ben-Shlomo ◽  
Thomas Krause ◽  
Thomas L. Mindt ◽  
...  

The use of metal chelators is becoming increasingly important in the development of new tracers for molecular imaging. With the rise of the field of nanotechnology, the fusion of both technologies has shown great potential for clinical applications. The pharmacokinetcs of nanoparticles can be monitored via positron emission tomography (PET) after surface modification and radiolabeling with positron emitting radionuclides. Different metal ion chelators can be used to facilitate labeling of the radionuclides and as a prerequisite, optimized radiolabeling procedure is necessary to prevent nanoparticle aggregation and degradation. However, the effects of chelator modification on nanoparticle pharmacokinetic properties have not been well studied and currently no studies to date have compared the biological effects of the use of different chelators in the surface modification of nanoparticles.


2011 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Karl Herholz ◽  

The most sensitive and accurate method for molecular imaging in human Alzheimer’s disease (AD) is positron emission tomography (PET). The most widely available PET tracer, which is also used in clinical oncology, is 18F-2-fluoro-2-deoxy-D-glucose (FDG). FDG is an imaging biomarker for early and differential diagnosis of AD. Even higher molecular specificity and sensitivity for detection of AD before dementia onset is provided by high-affinity ligands for fibrillary amyloid. 11C-Pittsburgh Compound B is widely being used in research laboratories, while new 18F-labelled ligands are currently undergoing formal clinical trials as amyloid imaging agents and are expected to become commercially available for clinical use in the near future. A large variety of tracers is being developed and used in dementia research for activated microglia and multiple neurotransmitter systems to study disease pathophysiology, biological correlates of clinical symptoms and new possibilities for treatment. Current studies in humans are investigating cholinergic, serotonergic and dopaminergic neurotransmission.


2009 ◽  
Vol 2 ◽  
pp. CGM.S2814 ◽  
Author(s):  
Yunan Yang ◽  
Hao Hong ◽  
Yin Zhang ◽  
Weibo Cai

Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET) has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jinhui Li ◽  
Jing Lu ◽  
You Zhou

The present study aimed to discuss the role of mitochondrion in cardiac function and disease. The mitochondrion plays a fundamental role in cellular processes ranging from metabolism to apoptosis. The mitochondrial-targeted molecular imaging could potentially illustrate changes in global and regional cardiac dysfunction. The collective changes that occur in mitochondrial-targeted molecular imaging probes have been widely explored and developed. As probes currently used in the preclinical setting still have a lot of shortcomings, the development of myocardial metabolic activity, viability, perfusion, and blood flow molecular imaging probes holds great potential for accurately evaluating the myocardial viability and functional reserve. The advantages of molecular imaging provide a perspective on investigating the mitochondrial function of the myocardium in vivo noninvasively and quantitatively. The molecular imaging tracers of single-photon emission computed tomography and positron emission tomography could give more detailed information on myocardial metabolism and restoration. In this study, series mitochondrial-targeted99mTc-,123I-, and18F-labeled tracers displayed broad applications because they could provide a direct link between mitochondrial dysfunction and cardiac disease.


2013 ◽  
Vol 77 (6) ◽  
pp. 1482-1489 ◽  
Author(s):  
Emi Kawachi ◽  
Yoshinari Uehara ◽  
Koki Hasegawa ◽  
Eiji Yahiro ◽  
Setsuko Ando ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Ji Hae Choi ◽  
Doori Oh ◽  
In Sun Kim ◽  
Hyeon-Soo Kim ◽  
Minjoo Kim ◽  
...  

Novel probe development for positron emission tomography (PET) is leading to expanding the scope of molecular imaging. To begin responding to challenges, several biomaterials such as natural products and small molecules, peptides, engineered proteins including affibodies, and antibodies have been used in the development of targeted molecular imaging probes. To prepare radiotracers, a few bioactive materials are unique challenges to radiolabelling because of their complex structure, poor stability, poor solubility in aqueous or chemical organic solutions, and sensitivity to temperature and nonphysiological pH. To overcome these challenges, we developed a new radiolabelling strategy based on photoactivated 1,3-dipolar cycloaddition between alkene dipolarophile and tetrazole moiety containing compounds. Herein, we describe a light-triggered radiochemical synthesis via photoactivated click reaction to prepare 18F-radiolabelled PET tracers using small molecular and RGD peptide.


US Neurology ◽  
2010 ◽  
Vol 06 (02) ◽  
pp. 28
Author(s):  
Karl Herholz ◽  

The most sensitive and accurate method for molecular imaging in human Alzheimer’s disease (AD) is positron emission tomography (PET). The most widely available PET tracer, which is also used in clinical oncology, is 18F-2-fluoro-2-deoxy-D-glucose (FDG). FDG is an imaging biomarker for early and differential diagnosis of AD. Even higher molecular specificity and sensitivity for detection of AD before dementia onset is provided by high-affinity ligands for fibrillary amyloid. 11C-Pittsburgh Compound B is widely being used in research laboratories, while new 18F-labeled ligands are currently undergoing formal clinical trials as amyloid imaging agents and are expected to become commercially available for clinical use in the near future. A large variety of tracers is being developed and used in dementia research for activated microglia and multiple neurotransmitter systems to study disease pathophysiology, biological correlates of clinical symptoms, and new possibilities for treatment. Current studies in humans are investigating cholinergic, serotonergic, and dopaminergic neurotransmission.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mohd Hanif Jainlabdin ◽  
Ambalika Batra ◽  
Edith Sánchez Paredes ◽  
Francisca Hernández Hernández ◽  
Guoliang Fu ◽  
...  

Abstract Invasive candidiasis is one of the most common nosocomial fungal infections worldwide. Delayed implementation of effective antifungal treatment caused by inefficient Candida diagnosis contributes to its notoriously high mortality rates. The availability of better Candida diagnostic tools would positively impact patient outcomes. Here, we report on the development of a single-tube, dual channel pentaplex molecular diagnostic assay based on Multiplex Probe Amplification (MPA) technology. It allows simultaneous identification of C. auris, C. glabrata and C. krusei, at species-level as well as of six additional albicans and non-albicans pathogenic Candida at genus level. The assay overcomes the one-channel one-biomarker limitation of qPCR-based assays. Assay specificities are conferred by unique biomarker probe pairs with characteristic melting temperatures; post-amplification melting curve analysis allows simple identification of the infectious agent. Alerting for the presence of C. auris, the well-characterised multi-drug resistant outbreak strain, will facilitate informed therapy decisions and aid antifungal stewardship. The MPA-Candida assay can also be coupled to a pan-Fungal assay when differentiation between fungal and bacterial infections might be desirable. Its multiplexing capacity, detection range, specificity and sensitivity suggest the potential use of this novel MPA-Candida assay in clinical diagnosis and in the control and management of hospital outbreaks.


Sign in / Sign up

Export Citation Format

Share Document