scholarly journals Facial Expression Recognition By Using Fisherface Methode With Backpropagation Neural Network

Author(s):  
Zaenal Abidin ◽  
Agus Harjoko

Abstract— In daily lives, especially in interpersonal communication, face often used for expression. Facial expressions give information about the emotional state of the person. A facial expression is one of the behavioral characteristics. The components of a basic facial expression analysis system are face detection, face data extraction, and facial expression recognition. Fisherface method with backpropagation artificial neural network approach can be used for facial expression recognition. This method consists of two-stage process, namely PCA and LDA. PCA is used to reduce the dimension, while the LDA is used for features extraction of facial expressions. The system was tested with 2 databases namely JAFFE database and MUG database. The system correctly classified the expression with accuracy of 86.85%, and false positive 25 for image type I of JAFFE, for image type II of JAFFE 89.20% and false positive 15,  for type III of JAFFE 87.79%, and false positive for 16. The image of MUG are 98.09%, and false positive 5.Keywords— facial expression, fisherface method, PCA, LDA, backpropagation neural network.

Webology ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 804-816
Author(s):  
Elaf J. Al Taee ◽  
Qasim Mohammed Jasim

A facial expression is a visual impression of a person's situations, emotions, cognitive activity, personality, intention and psychopathology, it has an active and vital role in the exchange of information and communication between people. In machines and robots which dedicated to communication with humans, the facial expressions recognition play an important and vital role in communication and reading of what is the person implies, especially in the field of health. For that the research in this field leads to development in communication with the robot. This topic has been discussed extensively, and with the progress of deep learning and use Convolution Neural Network CNN in image processing which widely proved efficiency, led to use CNN in the recognition of facial expressions. Automatic system for Facial Expression Recognition FER require to perform detection and location of faces in a cluttered scene, feature extraction, and classification. In this research, the CNN used for perform the process of FER. The target is to label each image of facial into one of the seven facial emotion categories considered in the JAFFE database. JAFFE facial expression database with seven facial expression labels as sad, happy, fear, surprise, anger, disgust, and natural are used in this research. We trained CNN with different depths using gray-scale images from the JAFFE database.The accuracy of proposed system was 100%.


2020 ◽  
Vol 8 (2) ◽  
pp. 68-84
Author(s):  
Naoki Imamura ◽  
Hiroki Nomiya ◽  
Teruhisa Hochin

Facial expression intensity has been proposed to digitize the degree of facial expressions in order to retrieve impressive scenes from lifelog videos. The intensity is calculated based on the correlation of facial features compared to each facial expression. However, the correlation is not determined objectively. It should be determined statistically based on the contribution score of the facial features necessary for expression recognition. Therefore, the proposed method recognizes facial expressions by using a neural network and calculates the contribution score of input toward the output. First, the authors improve some facial features. After that, they verify the score correctly by comparing the accuracy transitions depending on reducing useful and useless features and process the score statistically. As a result, they extract useful facial features from the neural network.


Information ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 375 ◽  
Author(s):  
Yingying Wang ◽  
Yibin Li ◽  
Yong Song ◽  
Xuewen Rong

As an important part of emotion research, facial expression recognition is a necessary requirement in human–machine interface. Generally, a face expression recognition system includes face detection, feature extraction, and feature classification. Although great success has been made by the traditional machine learning methods, most of them have complex computational problems and lack the ability to extract comprehensive and abstract features. Deep learning-based methods can realize a higher recognition rate for facial expressions, but a large number of training samples and tuning parameters are needed, and the hardware requirement is very high. For the above problems, this paper proposes a method combining features that extracted by the convolutional neural network (CNN) with the C4.5 classifier to recognize facial expressions, which not only can address the incompleteness of handcrafted features but also can avoid the high hardware configuration in the deep learning model. Considering some problems of overfitting and weak generalization ability of the single classifier, random forest is applied in this paper. Meanwhile, this paper makes some improvements for C4.5 classifier and the traditional random forest in the process of experiments. A large number of experiments have proved the effectiveness and feasibility of the proposed method.


Author(s):  
Sharmeen M. Saleem Abdullah ◽  
◽  
Adnan Mohsin Abdulazeez ◽  

Facial emotional processing is one of the most important activities in effective calculations, engagement with people and computers, machine vision, video game testing, and consumer research. Facial expressions are a form of nonverbal communication, as they reveal a person's inner feelings and emotions. Extensive attention to Facial Expression Recognition (FER) has recently been received as facial expressions are considered. As the fastest communication medium of any kind of information. Facial expression recognition gives a better understanding of a person's thoughts or views and analyzes them with the currently trending deep learning methods. Accuracy rate sharply compared to traditional state-of-the-art systems. This article provides a brief overview of the different FER fields of application and publicly accessible databases used in FER and studies the latest and current reviews in FER using Convolution Neural Network (CNN) algorithms. Finally, it is observed that everyone reached good results, especially in terms of accuracy, with different rates, and using different data sets, which impacts the results.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Seyed Muhammad Hossein Mousavi ◽  
S. Younes Mirinezhad

AbstractThis study presents a new color-depth based face database gathered from different genders and age ranges from Iranian subjects. Using suitable databases, it is possible to validate and assess available methods in different research fields. This database has application in different fields such as face recognition, age estimation and Facial Expression Recognition and Facial Micro Expressions Recognition. Image databases based on their size and resolution are mostly large. Color images usually consist of three channels namely Red, Green and Blue. But in the last decade, another aspect of image type has emerged, named “depth image”. Depth images are used in calculating range and distance between objects and the sensor. Depending on the depth sensor technology, it is possible to acquire range data differently. Kinect sensor version 2 is capable of acquiring color and depth data simultaneously. Facial expression recognition is an important field in image processing, which has multiple uses from animation to psychology. Currently, there is a few numbers of color-depth (RGB-D) facial micro expressions recognition databases existing. With adding depth data to color data, the accuracy of final recognition will be increased. Due to the shortage of color-depth based facial expression databases and some weakness in available ones, a new and almost perfect RGB-D face database is presented in this paper, covering Middle-Eastern face type. In the validation section, the database will be compared with some famous benchmark face databases. For evaluation, Histogram Oriented Gradients features are extracted, and classification algorithms such as Support Vector Machine, Multi-Layer Neural Network and a deep learning method, called Convolutional Neural Network or are employed. The results are so promising.


2021 ◽  
Vol 11 (4) ◽  
pp. 1428
Author(s):  
Haopeng Wu ◽  
Zhiying Lu ◽  
Jianfeng Zhang ◽  
Xin Li ◽  
Mingyue Zhao ◽  
...  

This paper addresses the problem of Facial Expression Recognition (FER), focusing on unobvious facial movements. Traditional methods often cause overfitting problems or incomplete information due to insufficient data and manual selection of features. Instead, our proposed network, which is called the Multi-features Cooperative Deep Convolutional Network (MC-DCN), maintains focus on the overall feature of the face and the trend of key parts. The processing of video data is the first stage. The method of ensemble of regression trees (ERT) is used to obtain the overall contour of the face. Then, the attention model is used to pick up the parts of face that are more susceptible to expressions. Under the combined effect of these two methods, the image which can be called a local feature map is obtained. After that, the video data are sent to MC-DCN, containing parallel sub-networks. While the overall spatiotemporal characteristics of facial expressions are obtained through the sequence of images, the selection of keys parts can better learn the changes in facial expressions brought about by subtle facial movements. By combining local features and global features, the proposed method can acquire more information, leading to better performance. The experimental results show that MC-DCN can achieve recognition rates of 95%, 78.6% and 78.3% on the three datasets SAVEE, MMI, and edited GEMEP, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2003 ◽  
Author(s):  
Xiaoliang Zhu ◽  
Shihao Ye ◽  
Liang Zhao ◽  
Zhicheng Dai

As a sub-challenge of EmotiW (the Emotion Recognition in the Wild challenge), how to improve performance on the AFEW (Acted Facial Expressions in the wild) dataset is a popular benchmark for emotion recognition tasks with various constraints, including uneven illumination, head deflection, and facial posture. In this paper, we propose a convenient facial expression recognition cascade network comprising spatial feature extraction, hybrid attention, and temporal feature extraction. First, in a video sequence, faces in each frame are detected, and the corresponding face ROI (range of interest) is extracted to obtain the face images. Then, the face images in each frame are aligned based on the position information of the facial feature points in the images. Second, the aligned face images are input to the residual neural network to extract the spatial features of facial expressions corresponding to the face images. The spatial features are input to the hybrid attention module to obtain the fusion features of facial expressions. Finally, the fusion features are input in the gate control loop unit to extract the temporal features of facial expressions. The temporal features are input to the fully connected layer to classify and recognize facial expressions. Experiments using the CK+ (the extended Cohn Kanade), Oulu-CASIA (Institute of Automation, Chinese Academy of Sciences) and AFEW datasets obtained recognition accuracy rates of 98.46%, 87.31%, and 53.44%, respectively. This demonstrated that the proposed method achieves not only competitive performance comparable to state-of-the-art methods but also greater than 2% performance improvement on the AFEW dataset, proving the significant outperformance of facial expression recognition in the natural environment.


Sign in / Sign up

Export Citation Format

Share Document