scholarly journals Perbandingan Metode Collaborative Filtering dan Hybrid Semantic Similarity

2019 ◽  
Vol 2 (3) ◽  
pp. 334
Author(s):  
Imam Fahrurrozi ◽  
Estu Muh Dwi Admoko ◽  
Anang Susilo

Recommender system is a component which has been developed for online commerce purposes. In this issue, one of the popular methods that has been widely used is collaborative filtering. However, this method has some drawbacks and needs to be improved. Therefore, in this research a combination of Collaborative Filtering (CF) and semantic similarity method has been compare with original CF, and the result expected reducing some deficiencies on the original collaborative filtering method. Based on the performance tests, the results conclude that the combination can reduce some weaknesses on the original collaborative filtering, especially on the cold-start item and sparsity issue.

2016 ◽  
Vol 43 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Mehdi Hosseinzadeh Aghdam ◽  
Morteza Analoui ◽  
Peyman Kabiri

Recommender systems have been widely used for predicting unknown ratings. Collaborative filtering as a recommendation technique uses known ratings for predicting user preferences in the item selection. However, current collaborative filtering methods cannot distinguish malicious users from unknown users. Also, they have serious drawbacks in generating ratings for cold-start users. Trust networks among recommender systems have been proved beneficial to improve the quality and number of predictions. This paper proposes an improved trust-aware recommender system that uses resistive circuits for trust inference. This method uses trust information to produce personalized recommendations. The result of evaluating the proposed method on Epinions dataset shows that this method can significantly improve the accuracy of recommender systems while not reducing the coverage of recommender systems.


2021 ◽  
Vol 11 (24) ◽  
pp. 11890
Author(s):  
Silvana Vanesa Aciar ◽  
Ramón Fabregat ◽  
Teodor Jové ◽  
Gabriela Aciar

Recommender systems have become an essential part in many applications and websites to address the information overload problem. For example, people read opinions about recommended products before buying them. This action is time-consuming due to the number of opinions available. It is necessary to provide recommender systems with methods that add information about the experiences of other users, along with the presentation of the recommended products. These methods should help users by filtering reviews and presenting the necessary answers to their questions about recommended products. The contribution of this work is the description of a recommender system that recommends products using a collaborative filtering method, and which adds only relevant feedback from other users about recommended products. A prototype of a hotel recommender system was implemented and validated with real users.


2014 ◽  
Vol 651-653 ◽  
pp. 1761-1766
Author(s):  
Lei Zheng

In this paper detection method for the illegal access to the cloud infrastructure is proposed. Detection process is based on the collaborative filtering algorithm constructed on the cloud model. Here, first of all, the normal behavior of the user is formed in the shape of a cloud model, then these models are compared with each other by using the cosine similarity method and by applying the collaborative filtering method the deviations from the normal behavior are evaluated. If the deviation value is above than the threshold, the user who gained access to the system is evaluated as illegal, otherwise he is evaluated as a real user.


2019 ◽  
Vol 11 (9) ◽  
pp. 182 ◽  
Author(s):  
Paul Sheridan ◽  
Mikael Onsjö ◽  
Claudia Becerra ◽  
Sergio Jimenez ◽  
George Dueñas

Collaborative filtering based recommender systems have proven to be extremely successful in settings where user preference data on items is abundant. However, collaborative filtering algorithms are hindered by their weakness against the item cold-start problem and general lack of interpretability. Ontology-based recommender systems exploit hierarchical organizations of users and items to enhance browsing, recommendation, and profile construction. While ontology-based approaches address the shortcomings of their collaborative filtering counterparts, ontological organizations of items can be difficult to obtain for items that mostly belong to the same category (e.g., television series episodes). In this paper, we present an ontology-based recommender system that integrates the knowledge represented in a large ontology of literary themes to produce fiction content recommendations. The main novelty of this work is an ontology-based method for computing similarities between items and its integration with the classical Item-KNN (K-nearest neighbors) algorithm. As a study case, we evaluated the proposed method against other approaches by performing the classical rating prediction task on a collection of Star Trek television series episodes in an item cold-start scenario. This transverse evaluation provides insights into the utility of different information resources and methods for the initial stages of recommender system development. We found our proposed method to be a convenient alternative to collaborative filtering approaches for collections of mostly similar items, particularly when other content-based approaches are not applicable or otherwise unavailable. Aside from the new methods, this paper contributes a testbed for future research and an online framework to collaboratively extend the ontology of literary themes to cover other narrative content.


Author(s):  
Quangui Zhang ◽  
Longbing Cao ◽  
Chengzhang Zhu ◽  
Zhiqiang Li ◽  
Jinguang Sun

Non-IID recommender system discloses the nature of recommendation and has shown its potential in improving recommendation quality and addressing issues such as sparsity and cold start. It leverages existing work that usually treats users/items as in- dependent while ignoring the rich couplings within and between users and items, leading to limited performance improvement. In reality, users/items are related with various couplings existing within and between users and items, which may better ex- plain how and why a user has personalized pref- erence on an item. This work builds on non- IID learning to propose a neural user-item cou- pling learning for collaborative filtering, called CoupledCF. CoupledCF jointly learns explicit and implicit couplings within/between users and items w.r.t. user/item attributes and deep features for deep CF recommendation. Empirical results on two real-world large datasets show that CoupledCF significantly outperforms two latest neural recom- menders: neural matrix factorization and Google’s Wide&Deep network.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 937
Author(s):  
Lit-Jie Chew ◽  
Su-Cheng Haw ◽  
Samini Subramaniam

Background: A recommender system captures the user preferences and behaviour to provide a relevant recommendation to the user. In a hybrid model-based recommender system, it requires a pre-trained data model to generate recommendations for a user. Ontology helps to represent the semantic information and relationships to model the expressivity and linkage among the data. Methods: We enhanced the matrix factorization model accuracy by utilizing ontology to enrich the information of the user-item matrix by integrating the item-based and user-based collaborative filtering techniques. In particular, the combination of enriched data, which consists of semantic similarity together with rating pattern, will help to reduce the cold start problem in the model-based recommender system. When the new user or item first coming into the system, we have the user demographic or item profile that linked to our ontology. Thus, semantic similarity can be calculated during the item-based and user-based collaborating filtering process. The item-based and user-based filtering process are used to predict the unknown rating of the original matrix. Results: Experimental evaluations have been carried out on the MovieLens 100k dataset to demonstrate the accuracy rate of our proposed approach as compared to the baseline method using (i) Singular Value Decomposition (SVD) and (ii) combination of item-based collaborative filtering technique with SVD. Experimental results demonstrated that our proposed method has reduced the data sparsity from 0.9542% to 0.8435%. In addition, it also indicated that our proposed method has achieved better accuracy with Root Mean Square Error (RMSE) of 0.9298, as compared to the baseline method (RMSE: 0.9642) and the existing method (RMSE: 0.9492). Conclusions: Our proposed method enhanced the dataset information by integrating user-based and item-based collaborative filtering techniques. The experiment results shows that our system has reduced the data sparsity and has better accuracy as compared to baseline method and existing method.


Sign in / Sign up

Export Citation Format

Share Document