scholarly journals CoupledCF: Learning Explicit and Implicit User-item Couplings in Recommendation for Deep Collaborative Filtering

Author(s):  
Quangui Zhang ◽  
Longbing Cao ◽  
Chengzhang Zhu ◽  
Zhiqiang Li ◽  
Jinguang Sun

Non-IID recommender system discloses the nature of recommendation and has shown its potential in improving recommendation quality and addressing issues such as sparsity and cold start. It leverages existing work that usually treats users/items as in- dependent while ignoring the rich couplings within and between users and items, leading to limited performance improvement. In reality, users/items are related with various couplings existing within and between users and items, which may better ex- plain how and why a user has personalized pref- erence on an item. This work builds on non- IID learning to propose a neural user-item cou- pling learning for collaborative filtering, called CoupledCF. CoupledCF jointly learns explicit and implicit couplings within/between users and items w.r.t. user/item attributes and deep features for deep CF recommendation. Empirical results on two real-world large datasets show that CoupledCF significantly outperforms two latest neural recom- menders: neural matrix factorization and Google’s Wide&Deep network.

2019 ◽  
Vol 9 (9) ◽  
pp. 1894 ◽  
Author(s):  
Zhi-Peng Zhang ◽  
Yasuo Kudo ◽  
Tetsuya Murai ◽  
Yong-Gong Ren

Recommender system (RS) can be used to provide personalized recommendations based on the different tastes of users. Item-based collaborative filtering (IBCF) has been successfully applied to modern RSs because of its excellent performance, but it is susceptible to the new item cold-start problem, especially when a new item has no rating records (complete new item cold-start). Motivated by this, we propose a niche approach which applies interrelationship mining into IBCF in this paper. The proposed approach utilizes interrelationship mining to extract new binary relations between each pair of item attributes, and constructs interrelated attributes to rich the available information on a new item. Further, similarity, computed using interrelated attributes, can reflect characteristics between new items and others more accurately. Some significant properties, as well as the usage of interrelated attributes, are provided in detail. Experimental results obtained suggest that the proposed approach can effectively solve the complete new item cold-start problem of IBCF and can be used to provide new item recommendations with satisfactory accuracy and diversity in modern RSs.


2021 ◽  
Vol 11 (6) ◽  
pp. 2817
Author(s):  
Tae-Gyu Hwang ◽  
Sung Kwon Kim

A recommender system (RS) refers to an agent that recommends items that are suitable for users, and it is implemented through collaborative filtering (CF). CF has a limitation in improving the accuracy of recommendations based on matrix factorization (MF). Therefore, a new method is required for analyzing preference patterns, which could not be derived by existing studies. This study aimed at solving the existing problems through bias analysis. By analyzing users’ and items’ biases of user preferences, the bias-based predictor (BBP) was developed and shown to outperform memory-based CF. In this paper, in order to enhance BBP, multiple bias analysis (MBA) was proposed to efficiently reflect the decision-making in real world. The experimental results using movie data revealed that MBA enhanced BBP accuracy, and that the hybrid models outperformed MF and SVD++. Based on this result, MBA is expected to improve performance when used as a system in related studies and provide useful knowledge in any areas that need features that can represent users.


2016 ◽  
Vol 43 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Mehdi Hosseinzadeh Aghdam ◽  
Morteza Analoui ◽  
Peyman Kabiri

Recommender systems have been widely used for predicting unknown ratings. Collaborative filtering as a recommendation technique uses known ratings for predicting user preferences in the item selection. However, current collaborative filtering methods cannot distinguish malicious users from unknown users. Also, they have serious drawbacks in generating ratings for cold-start users. Trust networks among recommender systems have been proved beneficial to improve the quality and number of predictions. This paper proposes an improved trust-aware recommender system that uses resistive circuits for trust inference. This method uses trust information to produce personalized recommendations. The result of evaluating the proposed method on Epinions dataset shows that this method can significantly improve the accuracy of recommender systems while not reducing the coverage of recommender systems.


2013 ◽  
Vol 411-414 ◽  
pp. 2223-2228
Author(s):  
Dong Liang Su ◽  
Zhi Ming Cui ◽  
Jian Wu ◽  
Peng Peng Zhao

Nowadays personalized recommendation algorithm of e-commerce can hardly meet the needs of users as an ever-increasing number of users and items in personalized recommender system has brought about sparsity of user-item rating matrix and the emergence of more and more new users has threatened recommender system quality. This paper puts forward a pre-filled collaborative filtering recommendation algorithm based on matrix factorization, pre-filling user-item matrixes by matrix factorization and building nearest-neighbor models according to new user profile information, thus mitigating the influence of matrix sparsity and new users and improving the accuracy of recommender system. The experimental results suggest that this algorithm is more precise and effective than the traditional one under the condition of extremely sparse user-item rating matrix.


Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


2021 ◽  
Vol 5 (1) ◽  
pp. 457-466
Author(s):  
Umar Kabiru ◽  
Abubakar Muhammad

User-based and item-based collaborative filtering techniques are among most explored strategies of making products’ recommendations to Users on online shopping platforms. However, a notable weakness of the collaborative filtering techniques is the cold start problem. Which include cold user problem, cold item problem and cold system problem – i.e., the failure of collaborative filtering to make recommendation of products to a new user, failure of an item to be recommended, or combination of the two respectively.  Literature investigation has shown that cold user problem could be effectively addressed using technique of personalized questionnaire. Unfortunately, where the products’ database is too large (as in Amazon.com), results obtained from personalized questionnaire technique could contain some user preference uncertainties. This paper presents technique of improving personalized questionnaire with uncertainty reduction technique. In addition, the paper presents classification of product recommendation systems. In this work we will be limited to user-based cold start.  Experimentation was conducted using Movielens dataset, where the proposed technique achieved significant performance improvement over personalized questionnaire technique with RMSE, Precision, Recall,1 and NDCG of 0.200, 0.227, 0.261, 0.174 and 0.249


Author(s):  
K. Venkata Ruchitha

In recent years, recommender systems became more and more common and area unit applied to a various vary of applications, thanks to development of things and its numerous varieties accessible, that leaves the users to settle on from bumper provided choices. Recommendations generally speed up searches and create it easier for users to access content that they're curious about, and conjointly surprise them with offers they'd haven't sought for. By victimisation filtering strategies for pre-processing the information, recommendations area unit provided either through collaborative filtering or through content-based Filtering. This recommender system recommends books supported the description and features. It identifies the similarity between the books supported its description. It conjointly considers the user previous history so as to advocate the identical book.


2019 ◽  
Vol 11 (9) ◽  
pp. 182 ◽  
Author(s):  
Paul Sheridan ◽  
Mikael Onsjö ◽  
Claudia Becerra ◽  
Sergio Jimenez ◽  
George Dueñas

Collaborative filtering based recommender systems have proven to be extremely successful in settings where user preference data on items is abundant. However, collaborative filtering algorithms are hindered by their weakness against the item cold-start problem and general lack of interpretability. Ontology-based recommender systems exploit hierarchical organizations of users and items to enhance browsing, recommendation, and profile construction. While ontology-based approaches address the shortcomings of their collaborative filtering counterparts, ontological organizations of items can be difficult to obtain for items that mostly belong to the same category (e.g., television series episodes). In this paper, we present an ontology-based recommender system that integrates the knowledge represented in a large ontology of literary themes to produce fiction content recommendations. The main novelty of this work is an ontology-based method for computing similarities between items and its integration with the classical Item-KNN (K-nearest neighbors) algorithm. As a study case, we evaluated the proposed method against other approaches by performing the classical rating prediction task on a collection of Star Trek television series episodes in an item cold-start scenario. This transverse evaluation provides insights into the utility of different information resources and methods for the initial stages of recommender system development. We found our proposed method to be a convenient alternative to collaborative filtering approaches for collections of mostly similar items, particularly when other content-based approaches are not applicable or otherwise unavailable. Aside from the new methods, this paper contributes a testbed for future research and an online framework to collaboratively extend the ontology of literary themes to cover other narrative content.


Sign in / Sign up

Export Citation Format

Share Document