scholarly journals Cellulose Fibers Dissolution in Alkaline Solution

2019 ◽  
Vol 14 (2) ◽  
pp. 107-115
Author(s):  
Yasmeen Salih Mahdi ◽  
Asem Hassan Mohammed ◽  
Alaa Kareem Mohammed

In this study, NaOH dissolution method was applied to dissolve cellulose fibers which extracted from date palm fronds (type Al-Zahdi) taken from Iraqi gardens. In this process, (NaOH)-solution is brought into contact with the cellulose fibers at low temperature. Experiments were conducted with different concentrations of NaOH (4%, 6%, 8% and12%) weight percent at two cooling bath temperatures (-15 oC) and (-20oC). Maximum cellulose dissolution was 23 wt% which obtained at 8 wt% concentration of NaOH and at cooling bath temperature of -20oC. In order to enhance the cellulose fibers dissolution, the sample was pretreated with Fenton's reagent which consists of hydrogen peroxide (H2O2), oxalic acid (C2H2O4) and ferrous sulfate (FeSO4). This reagent reacts with cellulose fibers and produces free radicals which increase cellulose dissolution. In this work three variables were studied: cooling bath temperature (-15oCand-20oC), NaOH concentration (4%, 6%, 8% and12%) and time of Fenton's reagent treatment (1-48) hrs. The results showed that the best percent of cellulose dissolution was (42 wt %) which occurred at treatment time (24 hours), temperature (-20oC) and NaOH concentration 8%. In another set of experiments urea was added to NaOH solution as a catalyst with proportion (6%NaOH+4% urea) at two temperatures -15 and -20 oC. The results show that the solubility of cellulose increase to 62% for the sample which treated with Fenton's reagent and to 35% for the untreated sample, both values were obtained at -15oC.  

Holzforschung ◽  
2016 ◽  
Vol 70 (3) ◽  
pp. 253-259 ◽  
Author(s):  
Reza Hosseinpourpia ◽  
Carsten Mai

Abstract The mode of action of phenol-formaldehyde (PF)-modified wood has been investigated with respect to its resistance to brown rot decay. The Fenton reaction is assumed to play a key role in the initial brown rot decay. Pine microveneers were modified to various weight percent gains (WPG) with low molecular weight PF and exposed to a solution containing Fenton’s reagent. The mass loss (ML) and tensile strength loss (TSL) as well as the decomposition of hydrogen peroxide within the incubation time decreased with the increasing WPG of the veneers. Incubation of untreated and PF-modified veneers in acetate buffer containing ferric ions without H2O2 revealed that the modification strongly reduces the uptake of iron by the wood cell wall. Further studies indicated that lignin promotes the decay of wood by Fenton’s reagent. The reason for the enhanced resistance of modified wood to the Fenton reaction is attributable to the impeded diffusion of iron ions into the cell wall rather than to the blocking of free phenolic sites of lignin, which accelerate redox cycling of iron.


2001 ◽  
Vol 44 (5) ◽  
pp. 103-108 ◽  
Author(s):  
J. Beltrán-Heredia ◽  
J. Torregrosa ◽  
J. García ◽  
J.R. Dominguez ◽  
J.C. Tierno

Degradation of olive mill wastewater (OMW) by means of two chemical oxidation processes (Fenton's reagent and ozonation) and their consecutive treatments with aerobic microorganisms have been studied. Fenton's reagent treatment moderately reduces COD and to a greater extent the polyphenolic compounds. Ozonation contributed to low conversion of COD and moderate reduction of polyphenols. The aerobic biological treatments degrade to values higher than 70% and 90% for COD and polyphenolic compounds, respectively. A kinetic study has been carried out in each process, determining the representative kinetic parameters of each model.


2000 ◽  
Vol 9 (4) ◽  
pp. 331-345 ◽  
Author(s):  
Katherine R. Weeks ◽  
Clifford J. Bruell ◽  
Nihar R. Mohanty

Tetrahedron ◽  
1963 ◽  
Vol 19 (11) ◽  
pp. 1705-1710 ◽  
Author(s):  
G.J. Moody

Sign in / Sign up

Export Citation Format

Share Document