scholarly journals FORMULATION AND EVALUATION OF IMPLANTABLE DRUG DELIVERY SYSTEM OF TEMOZOLOMIDE BY USING HYDROPHILIC POLYMER

Author(s):  
Sindhu Vemula ◽  
Bhavya S ◽  
Suresh Kumar P ◽  
Jeyabaskaran M ◽  
Praveenkumar T ◽  
...  

  Objective: The present research study was carried out to formulate and evaluate the implants of temozolomide using hydrophilic polymer.Methods: Temozolomide implants were formulated using extrusion method with different grades of carbopol. The powdered blend was evaluated for micromeritic properties such as angle of repose, bulk density, tapped density, Carr’s index, and Hausner’s ratio. The formulated implants were analyzed for drug content uniformity, thickness, weight variation, and short-term stability study. In vitro release study of implants was performed using 0.1N hydrochloric acid, and it is maintained at 37°C±0.5°C.Results: In vitro release study demonstrated that the release rate of temozolomide from the implant matrix was a function of concentration of the polymer. As the concentration of polymer was increased, drug release from the matrix was extended. The release of drug from all implant formulations was found to be uniform and was extended over a period of 12 hrs. The implant formulations were found sterile, uniform in weight and size. The drug content was found to be in the range of 97.2-101.33%.Conclusion: Drug interaction studies revealed that there were no chemical interactions between temozolomide and polymers used in the study. Short-term stability studies of implants revealed that implants were stable, and there were no significant changes in the physical appearance and drug content of the implant formulations. The results of the study demonstrated that implantable drug delivery system of temozolomide can be formulated using hydrophilic polymer.

2016 ◽  
Vol 16 (4) ◽  
pp. 120-127 ◽  
Author(s):  
Roghayeh Abbasalipo ◽  
Mohammad Fallah ◽  
Fruzan Sedighi ◽  
Amir Hossein Maghsood ◽  
Saman Javid

2009 ◽  
Vol 25 (2) ◽  
pp. 161-177 ◽  
Author(s):  
Bhavesh D. Kevadiya ◽  
Ghanshyam V. Joshi ◽  
Hasmukh A. Patel ◽  
Pravin G. Ingole ◽  
Haresh M. Mody ◽  
...  

2016 ◽  
Vol 105 (11) ◽  
pp. 3387-3398 ◽  
Author(s):  
Emelie Ahnfelt ◽  
Erik Sjögren ◽  
Per Hansson ◽  
Hans Lennernäs

1998 ◽  
Vol 550 ◽  
Author(s):  
E. J. Ginsburg ◽  
T. D. Stultz ◽  
D. A. Stephens ◽  
D. Robinson ◽  
Y. Tian ◽  
...  

AbstractThe dissolution of a drug delivery system consisting of gentamicin sulfate in a hydrophobic polyanhydride matrix has been examined. The in vitro release of gentamicin is a function of the composition of the dissolution medium, with slower release in pH 7.4 buffer than in unbuffered water. This is consistent with an anion exchange taking place under conditions in which carboxylate polymer chain-ends form a poorly soluble salt with gentamicin, and sulfate is released into solution. Results of additional experiments probing this model are digeussed.


2020 ◽  
Vol 15 (7) ◽  
pp. 425-429 ◽  
Author(s):  
Yuqiong Shi ◽  
Beibei Qiu ◽  
Xiangrong Wu ◽  
Yuxuan Wang ◽  
Jinhua Zhu ◽  
...  

2020 ◽  
Vol 52 (11) ◽  
pp. 1265-1274
Author(s):  
Zhijuan Zhao ◽  
Xiaodong Cui ◽  
Xiaoli Ma ◽  
Zhuanhua Wang

Abstract The self-nanoemulsifying drug delivery system has shown many advantages in drug delivery. In this study, a self-nanoemulsifying drug delivery system of buckwheat flavonoids was prepared for enhancing its antioxidant activity and oral bioavailability. A nanoemulsion of buckwheat flavonoids was developed and characterized, and its antioxidant, in vitro release, and in vivo bioavailability were determined. The nanoemulsion was optimized by the central composite design response surface experiment, and its particle size, polymer dispersity index (PDI), zeta potential, morphology, encapsulation efficiency, and stability were evaluated. The antioxidant activity was tested by measuring its 2,2-diphenyl-1-picrylhydrazyl scavenging activity, hydroxyl radical scavenging activity, and superoxide anion scavenging ability. In vitro release of buckwheat flavonoids nanoemulsion showed a higher cumulative release than the suspension, and the release fitting model followed the Ritger–Peppas and Weibull models. The effective concentration of the nanoemulsion was evaluated in vivo using a Wistar rat model, and the area under the plasma concentration-time curve of the buckwheat flavonoids nanoemulsion was 2.2-fold higher than that of the buckwheat flavonoid suspension. The Cmax of the nanoemulsion was 2.6-fold greater than that of the suspension. These results indicate that the nanoemulsion is a promising oral drug delivery system that can improve the oral bioavailability to satisfy the clinical requirements.


Sign in / Sign up

Export Citation Format

Share Document