scholarly journals INFLUENCE OF FORMULATION PARAMETERS ON DISSOLUTION RATE ENHANCEMENT OF ACYCLOVIR USING LIQUISOLID FORMULATION

Author(s):  
Kubota Mwaka Hazemba ◽  
Jivan Jyoti ◽  
Sheetu Wadhwa ◽  
Sananda Som ◽  
Souvik Mohanta ◽  
...  

Objective: The objective of this research work is to explore the use of liquisolid technique in enhancement of acyclovir dissolution rate. This current study was planned to assess the impact of different formulation variables, such as non-volatile liquid type and concentrations of acyclovir on its dissolution rates profile. Method: Acyclovir liquisolid tablets were prepared with Tween 60 (liquid vehicle), Microcrystalline cellulose PH 102 (acted as a carrier to turn liquid medication into free-flowing powder) and Syloid XDP (coating material). In vitro, drug dissolution rate of liquisolid formulations of acyclovir was performed and compared with pure acyclovir drug using USP dissolution apparatus (Type II) for 60 min at a paddle speed of 50 rpm and filled with 900 mL of distilled water. Results: The dissolution study showed that 94.1% of the drug was released in 60 min of ratio 10 while only 66% of the pure drug acyclovir was released in 60 min. Hence, present work concluded that the acyclovir dissolution rate profile has been improved with the formation of liquisolid formulations. Conclusion: From the present study, it may be ratified that the drug dissolution rate of acyclovir has been improved with the utilization of liquisolid formulations approach. 

INDIAN DRUGS ◽  
2021 ◽  
Vol 57 (11) ◽  
pp. 22-26
Author(s):  
Manisha Dhere ◽  
◽  
Arti Majumdar ◽  
Neelesh Malviya

In the present research, newly developed complex with sodium caprylate was investigated for solubility and dissolution enhancement of eluxadoline. Complexes were prepared in different ratios by solvent evaporation method and characterised solubility study, Infrared spectroscopy (IR), Diffrential scanning calorimetry (DSC), X-Ray Diffraction (XRD), drug content analysis and in vitro Drug release. The solubility and dissolution rate revealed most suitable ratio of eluxadoline and sodium caprylate (1:4). The IR, DSC and X-RD data also confirmed the results. It was concluded that complex prepared with (1:4 drug:sodium caprylate ratio) using solvent evaporation method showed significant improvement in solubility and drug dissolution.


Author(s):  
Naveen Goyal ◽  
Anil Kumar

Objective: The main objective of this research work was to design, prepare and evaluate extended release (ER) tablets of anti-asthmatic drugs (salbutamol sulphate and theophylline) by direct compression method using diverse ratios of hydroxypropyl methylcellulose (HPMC K100M) and ethyl cellulose (EC) along with some other excipients.Methods: Extended-release matrix tablets of salbutamol sulphate and theophylline were successfully fabricated by direct compression method and coded the formulations as F1 to F7 depending on the ratios of modified polymers. The core tablets composed of hydrophilic polymers of various ratios that allow the discharge of drugs at a controlled rate after coming in contact with the aqueous medium. The designed tablets were subjected to various assessment parameters i.e. friability test, hardness test, drug content consistency and In vitro dissolution tests.Results: Prepared formulations were subjected to various assessment parameters and the findings obtained were within the prescribed limit. To perform the in vitro drug dissolution tests of fabricated tablets, the calibration plots of pure drugs using various solvents i.e. 0.1N HCl, phosphate buffer (pH 6.8) and distilled water were plotted. Dosage forms F1-F7 containing ethyl cellulose and HPMC K100M in various concentration demonstrates the prolonged medications discharge for up to 8 h, among these formulations, F6 shows 95.32±0.24 % for salbutamol sulphate and 94.19±0.39 % for theophylline release at the end of 8 h. This finding reveals that a particular window of concentrations of ethylcellulose and HPMC K100M was capable of providing prolonged drugs discharge.Conclusion: The results obtained in this research work clearly showed a promising potential of extended-release tablets containing a specific ratio of HPMC K100M and ethylcellulose as a release rate controlling polymers for effective treatment of asthma and chronic obstructive pulmonary diseases (COPD).


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
J. Martir ◽  
T. Flanagan ◽  
J. Mann ◽  
Nikoletta Fotaki

Abstract Paediatric medicines are not always age-appropriate, causing problems with dosing, acceptability and adherence. The use of food and drinks as vehicles for medicine co-administration is common practice, yet the impact on drug bioavailability, safety and efficacy remains unaddressed. The aim of this study was to use in vitro dissolution testing, under infant simulating conditions, to evaluate the effect of co-administration with vehicles on the dissolution performance of two poorly soluble paediatric drugs. Dissolution studies of mesalazine and montelukast formulations were conducted with mini-paddle apparatus on a two-stage approach: simulated gastric fluid followed by addition of simulated intestinal fluid. The testing scenarios were designed to reflect daily administration practices: direct administration of formulation; formulation co-administered with food and drinks, both immediately after mixing and 4 h after mixing. Drug dissolution was significantly affected by medicine co-administration with vehicles, compared to the direct administration of formulation. Furthermore, differences were observed on drug dissolution when the formulations were mixed with different vehicles of the same subtype. The time between preparation and testing of the drug-vehicle mixture also impacted dissolution behaviour. Drug dissolution was shown to be significantly affected by the physicochemical properties and composition of the vehicles, drug solubility in each vehicle and drug/formulation characteristics. Ultimately, in this study, we show the potential of age-appropriate in vitro dissolution testing as a useful biopharmaceutical tool for estimating drug dissolution in conditions relevant to the paediatric population. The setup developed has potential to evaluate the impact of medicine co-administration with vehicles on paediatric formulation performance.


2012 ◽  
Vol 38 (8) ◽  
pp. 961-970 ◽  
Author(s):  
Sachin Kumar Singh ◽  
K. K. Srinivasan ◽  
K. Gowthamarajan ◽  
Dev Prakash ◽  
Narayan B. Gaikwad ◽  
...  

2011 ◽  
Vol 61 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Vikas Saharan ◽  
Pratim Choudhury

Dissolution rate enhancement of gliclazide by ordered mixingThe poorly water soluble antidiabetic drug gliclazide was selected to study the effect of excipients on dissolution rate enhancement. Ordered mixtures of micronized gliclazide with lactose, mannitol, sorbitol, maltitol and sodium chloride were prepared by manual shaking of glass vials containing the drug and excipient(s). Different water soluble excipients, addition of surfactant and superdisintegrant, drug concentration and carrier particle size influenced the dissolution rate of the drug. Dissolution rate studies of the prepared ordered mixtures revealed an increase in drug dissolution with all water soluble excipients. The order of dissolution rate improvement for gliclazide was mannitol > lactose > maltitol > sorbitol > sodium chloride. Composite granules of the particle size range 355-710 μm were superior in increasing the drug dissolution rate from ordered mixtures. Reducing the carrier particle size decreased the dissolution rate of the drug as well as the increase in drug concentration. Kinetic modeling of drug release data fitted best the Hixson-Crowell model, which indicates that all the ordered mixture formulations followed the cube root law fairly well.


Author(s):  
Nobuyuki Takahashi ◽  
Yoshiaki Fujita ◽  
Nanako Takahashi ◽  
Akihiro Nakamura ◽  
Tsutomu Harada

Abstract Background Xanthan gum-based food thickeners (XG-FTs) are often ingested by patients with dysphagia to prevent aspiration during drug treatment. Reportedly, XG-FTs affect tablet disintegration, drug dissolution rates, and reduce the efficacy of postprandial antihyperglycemic agents. The absorption rate and quantity of fluoroquinolone antimicrobial agents correlate with drug efficacy, raising concern about the impact of XG-FTs. Previously, we reported that film-coated tablets were less susceptible to the effects of XG-FT than conventional and orally disintegrating tablets. Here, we compare the effect of XG-FTs on dissolution profiles of three oral fluoroquinolone-based film-coated tablets by evaluating the dissolution of crushed products, fine granules, and film-coated fine granules. Methods We examined formulations of tosufloxacin tosylate monohydrate (TFLX), levofloxacin hemihydrate (LVFX), and ciprofloxacin hydrochloride hydrate (CPFX). The formulations were immersed in 20 mL of 1.5% (w/v) XG-FT aqueous solution for 2.5 min followed by a dissolution test using the paddle method according to the Japanese Pharmacopoeia (dissolution test solution pH 1.2; volume 900 mL; temperature 37 ± 0.5 °C). The dissolution profile was evaluated according to the dissolution quantity indicated in product specifications and guidelines for bioequivalence testing of generic drugs. The 15-min mean dissolution rate was determined for a formulation immersed in 1.5% (w/v) XG-FT aqueous solution and compared with that for a non-immersed formulation (control). Fluoroquinolone film-coated tablets were mixed with starch-based FTs, guar gum-based FTs, or XG-FTs to observe their appearances. Results The dissolution profile of LVFX film-coated tablets was not affected by XG-FTs, but the dissolution of TFLX and CPFX was delayed. For crushed film-coated tablets, the 15-min mean dissolution rate was significantly delayed for all three fluoroquinolones when compared with that of uncrushed products. The dissolution profile of TFLX film-coated fine granules was unchanged by XG-FTs. CPFX film-coated tablets and crushed products produced a gel-like precipitate when mixed with XG-FTs and failed to meet product-dissolution specifications. A gel-like precipitate was also observed with guar gum-based FTs. Conclusion The effect of XG-FTs on the dissolution profile of film-coated fluoroquinolone formulations varied depending on the formulation. The CPFX formulation formed a gel-like precipitate when immersed in XG-FTs resulting in a significantly delayed dissolution.


Author(s):  
Rusul M. Alwan ◽  
Nawal A. Rajab

Selexipag is an orally selective long-acting prostacyclin receptor agonist, which indicated for the treatment of pulmonary arterial hypertension. It is practically insoluble in water ( class II, according to BCS). This work aims to prepare and optimized Selexipag nanosuspensions to achieve an enhancement in the in vitro dissolution rate. The solvent antisolvent precipitation method was used for the production of nanosuspension, and the effect of formulation parameters (stabilizer type, drug: stabilizer ratio, and use of co-stabilizer) and process parameter (stirring speed) on the particle size and polydispersity index were studied. SLPNS prepared with Soluplus® as amain stabilizer (F15) showed the smallest particle size 47nm with PDI and Zeta potential value of 0.073 and -47mV, respectively. SLPNS exhibited an increase in the dissolution rate in phosphate buffer pH 6.8 (100% drug release during 60 min) compared to the pure drug ( 40% during the same time). This result indicates that SLPNS is an efficient way of improving the dissolution rate.  


2019 ◽  
Vol 9 (4) ◽  
pp. 330-340 ◽  
Author(s):  
Ravinder Verma ◽  
Deepak Kaushik

Objective: The objective of the current research is systematic optimization and development of microemulsion preconcentrates to get better solubility that results in improvement of oral bioavailability profile of Telmisartan utilizing D-optimal mixture design. Methods: Solubility studies in a variety of lipidic ingredients and optimization of formulations were carried out for the development of liquid SMEDDS. D-optimal mixture design was utilized for assessing the interaction performance of desired responses (such as % cumulative drug release and globule size) and optimized using desirability approach. The optimized batch was evaluated for its % cumulative drug release and globule size performance for determining the dissolution rate and oral bioavailability of drug. Results: The optimized batch (F-8), which contained 10% oil (Capmul MCM EP), 45% surfactant (Labrasol) and 45% co-surfactant (Transcutol HP) resulted in desired qualities of measured responses with 84.6nm globule size and 98.5% drug release within 15 minutes. Optimized SMEDDS showed brilliant goodness of fit between drug release. Stability studies indicated stability of the optimized SMEDDS batch over 3-month storage at 40°C/75% RH and improved dissolution rate in contrast to pure API. The optimized SMEDDS showed no impact of in vitro lipolysis on drug release. Conclusion: Developed and optimized SMEDDS showed improved in vitro dissolution rate and dissolution profile in contrast to pure drug. These investigations further confirm dose reduction in SMEDDS by gaining an equivalent therapeutic profile with non-SMEDDS formulation. This research work successfully shows the potential usage of SMEDDS for delivery of BCS-II class drugs.


2019 ◽  
Vol 141 ◽  
pp. 210-220 ◽  
Author(s):  
Emanuela Cingolani ◽  
Safar Alqahtani ◽  
Robyn C Sadler ◽  
David Prime ◽  
Snjezana Stolnik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document