scholarly journals DETERMINATION OF CHROMATOGRAPHIC ASSAY AND VALIDATION OF OFLOXACIN IN BULK AND PHARMACEUTICAL DOSAGE FORM

Author(s):  
Sumithra M

Objective: The objective of the study is simple, sensitive; eco-friendly reverse phase chromatographic method has been developed and validated for the quantitative determination of ofloxacin in bulk and marketed formulation. Method: The developed method was done using Hypersil silica C18 (250 mm × 4.6 mm, 5 μ particle size) as column and the mobile phase is containing water and methanol in the ratio of (10:90) vol/vol. The mobile phase pass at 1 ml/min flow rate and the eluted solution is measured at 270 nm using a PDA detector. Results: The assay method is linear from the concentration range of 5–30 μg/ml. The corelation coefficient is 0.9998. The mean percentage recovery for the developed method is found to be in the range of 98.4–100.6%. The developed method complies robustness studies. Conclusion: The validation of the developed method was done by as per the ICH guidelines. It obeys the linearity, accuracy, precision, and robustness studies. Validation parameters are within the limitations. The results of the developed process indicated the reverse phase chromatographic method is simple, accurate as well as precise, rapid and eco-friendly method for routine analysis of ofloxacin in bulk and its pharmaceutical dosage form.

INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (12) ◽  
pp. 51-55
Author(s):  
S Kathirvel ◽  
◽  
K. Madhu Babu

Described in this manuscript is the first reported new, simple high performance thin layer chromatographic method for the determination of tapentadol hydrochloride in bulk and its tablet dosage form. The drug was separated on aluminum plates precoated with silica gel 60 F254 with butanol: water: glacial acetic acid in the ratio of 6:2:2 (v/v/v) as mobile phase. Quantitative analysis was performed by densitometric scanning at 254 nm. The method was validated for linearity, accuracy, precision and robustness. The calibration plot was linear over the range of 200-600 ng band -1 for tapentadol hydrochloride. The method was successfully applied to the analysis of drug in a pharmaceutical dosage form.


Author(s):  
Devi Ramesh ◽  
Mohammad Habibuddin

Objective: The objective of the present study is to develop and validate a simple, rapid, sensitive reverse phase HPLC method for the determination of Armodafinil present in bulk and its pharmaceutical formulations.Methods: The chromatographic separation was achieved by using Hypersil ODS C-18 (150 x 4.6 mm, 5µ) in an isocratic mode with mobile phase methanol: phosphate buffer 3.0 (60:40 %v/v) was used. The flow rate was 1 ml/min and effluent was monitored at 225 nm. The method was validated for validation parameters i.e. linearity, accuracy, precision and robustness according to ICH guidelines.Results: The retention time of Armodafinil was 4.2 min and the linearity range of the method was 500-20000ng/ml with regression (r2) coefficient 0.9998. The method was validated for precision, accuracy, robustness and which were found to be within the acceptable limits according to the ICH guidelines. Also, the method was successfully applied for the estimation of Armodafinil in the marketed formulation of Nuvigil and the recovery was found to be>98%.Conclusion: The developed method possess good selectivity, specificity, there is no interference found in the blank at a retention time of ARM and good correlation between the peak area and concentration of the drugs under prescribed conditions. Hence, the method can be applied for routine analysis of Armodafinil. 


2013 ◽  
Vol 19 (3) ◽  
pp. 333-337 ◽  
Author(s):  
A.C. Arvadiya ◽  
P.P. Dahivelker

A simple, precise, accurate, sensitive and repeatable RP-UPLC method was developed for quantitative determination of atropine sulphate in pharmaceutical dosage form. The method was developed by using C18 column Hiber HR Purospher Star (100mm?2.1mm id, 2?m particle size) as stationary phase with Phosphate Buffer: Acetonitrile (87:13, %v/v) as a mobile phase, pH was adjusted to 3.5 by ortho-phosphoric acid at a flow rate of 0.5 mL/min and column temperature maintained at 30?C. Quantification of eluted compound was achieved with PDA detector at 210 nm. Atropine sulphate followed linearity in concentration range of 2.5-17.5 ?g/mL with r2=0.9998 (n=6). Limit of detection (LOD) and limit of quantification (LOQ) values were 0.0033 and 0.0102 ?g/mL for atropine sulphate. The validation study is carried out as per International Conference on Harmonization (ICH) guidelines. This method was successfully applied for estimation of atropine sulphate in pharmaceutical formulation.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (10) ◽  
pp. 13-17
Author(s):  
V. V Kunjir ◽  
◽  
S. B. Jadhav ◽  
A. J Purkar ◽  
P. D. Chaudhari

A high performance thin layer chromatographic method has been developed for the simultaneous determination of olmesartan medoximil and metoprolol succinate from tablet dosage form. The mobile phase consisting of water-methanol-ammonium sulphate (4.5:4.5:1.5 v/v/v) and wavelength of detection 233 nm was used. The developed method was validated as per ICH guidelines.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Celine Zambakjian ◽  
Amir Alhaj Sakur

Abstract Background Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) that has analgesic, anti-inflammatory, and antipyretic properties. Caffeine is one of the most common adjuvant analgesic drugs which is combined with ibuprofen in commercially available formulations. Combining analgesics offers the possibility of increasing effectiveness without increasing dose and therefore risk. Prescribing ibuprofen and caffeine together is common in clinical practice. This is the first work reporting a new and validated gas chromatographic method for the simultaneous determination of ibuprofen and caffeine in bulk and pharmaceutical dosage form. The separation was performed on a TRB-17 column (30.00 m in length, 0.25-mm ID, and 0.25-μm df). Detection was carried out using a flame ionization detector (FID). Methyl paraben was used as an internal standard. The injection volume was 1 μL with 1:50 split ratio using nitrogen as a carrier gas at a flow rate of 1 mL/min. The oven temperature was programmed at 150 °C for 0.5 min, with a rise of 10 °C/min up to 250 °C. The injector temperature was 280 °C, and the detector temperature was 300 °C. The validation of the method including linearity, range, detection limit (DL), quantitation limit (QL), accuracy, precision, specificity, system suitability, and robustness was carried out utilizing International Conference on Harmonization (ICH) guidelines. Results The retention times of methyl paraben, ibuprofen, and caffeine were 1.687, 2.594, and 4.031 min, respectively. The method was linear in the range of 1000–7000 μg/mL for ibuprofen and 162.5–1137.5 μg/mL for caffeine with a correlation coefficient of 0.9999 for both drugs. The DL was found to be 131.68 μg/mL and 15.74 μg/mL for ibuprofen and caffeine, respectively, whereas QL was found to be 399.02 μg/mL for ibuprofen and 47.68 μg/mL for caffeine. The accuracy of the method was validated by mean percentage recovery, which was found to be in the acceptable range. The precision study results of the new method were less than the maximum allowable limit percentage of relative standard deviation %RSD ≤ 2.0. The specificity was evaluated by the standard edition method, and the results of the recovery data showed that excipients do not affect the accuracy of the proposed method. The results of system suitability and robustness tests were also within the acceptable limits. Conclusion The first reported method for simultaneous determination of ibuprofen and caffeine by gas chromatography in bulk and combined dosage form was carried out in this work. The developed method gave a good separation of the drugs and internal standard. The analytical performance of the method was statistically validated as per ICH guidelines, and satisfactory results were obtained. The proposed method can be easily adopted for the routine analysis of ibuprofen and caffeine.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Dalia A. Hamdy ◽  
Tarek S. Belal

Objective. To develop and compare HPLC-DAD and UHPLC-UV assays for the quantitation of posaconazole in bulk powder and suspension dosage form.Methods. Posaconazole linearity range was 5–50 μg/mL for both assays. For HPLC-DAD assay, samples were injected through Zorbax SB-C18 (4.6 × 250 mm, 5 μm) column. The gradient elution composed of the mobile phase acetonitrile: 15 mM potassium dihydrogen orthophosphate (30 : 70 to 80 : 20, linear over 7 minutes) pumped at 1.5 mL/min. For UHPLC-UV assay, samples were injected through Kinetex-C18 (2.1 × 50 mm, 1.3 μm) column. The mobile phase composed of acetonitrile: 15 mM potassium dihydrogen orthophosphate (45 : 55) pumped isocratically at 0.4 mL/min. Detection wavelength was 262 nm in both methods.Results. The run time was 11 and 3 minutes for HPLC-DAD and UHPLC-UV assays, respectively. Both assays were linear (r2>0.999) with CV% and % error of the mean <3%. Limits of detection and quantitation were 0.82 and 2.73 μg/mL for HPLC-DAD and 1.04 and 3.16 μg/mL for UHPLC-UV, respectively. The methods quantitated PSZ in suspension dosage form with no observable interferences.Conclusions. Both assays were proven sensitive and selective according to ICH guidelines. UHPLC-UV assay exhibited some economic and chromatographic separation superiority.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Dimal A. Shah ◽  
Dixita J. Suthar ◽  
Sunil L. Baldania ◽  
Usman K. Chhalotiya ◽  
Kashyap K. Bhatt

An isocratic, reversed phase-liquid-chromatographic assay method was developed for the quantitative determination of ibuprofen and famotidine in combined-dosage form. A Brownlee C18, 5 μm column with mobile phase containing water : methanol : acetonitrile (30 : 60 : 10, v/v/v) was used. The flow rate was 1.0 mL/min, and effluents were monitored at 264 nm. The retention times of ibuprofen and famotidine were 4.9 min and 6.8 min, respectively. The linearity for ibuprofen and famotidine was in the range of 2–20 μg/mL and 0.1–10 μg/mL, respectively. The proposed method was validated with respect to linearity, accuracy, precision, specificity, and robustness. The method was successfully applied to the estimation of ibuprofen and famotidine in combined dosage form.


2009 ◽  
Vol 6 (s1) ◽  
pp. S59-S64 ◽  
Author(s):  
Prafulla Kumar Sahu ◽  
M. Mathrusri Annapurna

RP-HPLC analytical method for the estimation of nabumetone in pharmaceutical dosage forms was developed and validated. A Hypersil ODS C18, 4.6 mm x 250 mm, 5 μm column from Supelco (India), with mobile phase comprised of acetonitrile: triple distilled water (50:50) with a total run time of 18 min was used and the wavelength of the detector was set at 230 nm. Stavudin is used as internal standard. The retention times were 14.167 min and 1.967 min for nabumetone and stavudin (IS) respectively. The extraction recovery of nabumetone from pharmaceutical dosage form (tablets) was >101% and the calibration curve was linear (r2= 0.995) over nabumetone concentrations ranging from 1 to 200 µg/mL. The method had an accuracy of >99% and LOD and LOQ of 0.17482 µg/mL and 0.5827 µg/mL respectively. The method reported is simple, reliable, precise and accurate and has the capability of being used for determination of nabumetone in bulk and pharmaceutical dosage forms.


Author(s):  
ARULSELVAN MURUGESAN ◽  
MUKTHINUTHALAPATI MATHRUSRI ANNAPURNA

Objective: This method is focused on developing a precisely simplified and more accurate Reverse Phase–High Pressure Liquid Chromatography (RP-HPLC) method for the determination of Dapagliflozin in bulk and pharmaceutical dosage form as per guidelines of International Council for Harmonization (ICH). Methods: Evaluation and validation carried out using the RP-HPLC ZORBAX (C18) column (250 x 4.6 mm, 5 μm particle size) with a mobile phase consisting of Phosphate Buffer: Acetonitrile: Methanol in a ratio of 55:40:05 (v/v/v) at a flow rate of 1 ml/min with an injection volume of 10 μl. Results: Dapagliflozin was eluted at 2.12±0.05 min and detected at 225 nm. The regression equation y = 55762 x-29679 found to be linear with correlation coefficient r2 value of 0.9997. The developed RP-HPLC method was conveniently validated as per the ICH guidelines and found method was robust, sensitive, accurate, selective, specific, precise and linear. Conclusion: The proposed method was found to be accurate, precise, and robust for API and pharmaceutical dosage form as per experimentation analysis. The above developed method was found to be satisfied for Active Pharmaceutical Ingredient (API) and pharmaceutical formulation of Dapagliflozin to study its degradation products.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
M. V. Basaveswara Rao ◽  
A. V. D Nagendrakumar ◽  
Sushanta Maiti ◽  
N. Chandrasekhar

A simple, selective, linear, precise, and accurate RP-HPLC method was developed and validated for rapid assay of Pizotifen in pharmaceutical dosage form. Isocratic elution at a flow rate of 1.0 mL/min was employed on Chromosil C18 (250 mm × 4.6 mm, 5 μm) column at ambient temperature. The mobile phase consists of methanol : acetonitrile in the ratio of 10 : 90 v/v. The UV detection wavelength was 230 nm, and 20 μL sample was injected. The retention time for Pizotifen was 2.019 min. The percent RSD for accuracy of the method was found to be 0.2603%. The method was validated as per the ICH guidelines. The method can be successfully applied for routine analysis of Pizotifen in the rapid and reliable determination of Pizotifen in pharmaceutical dosage form.


Sign in / Sign up

Export Citation Format

Share Document