scholarly journals FORMULATION AND OPTIMIZATION OF MUCOADHESIVE MICROSPHERES OF VALSARTAN BY USING BOX-BEHNKEN DESIGN

Author(s):  
CHIMAN LAL ◽  
RAJEEV GARG ◽  
GHANSHYAM DAS GUPTA

Objective: The purpose of this study was to formulate and optimize mucoadhesive microspheres of antihypertensive drug (valsartan) within ethyl cellulose as a carrier polymer and carbopol 934P as a mucoadhesive polymer for controlling the release of valsartan. Methods: The emulsion solvent evaporation technique was used for preparation of microspheres of valsartan and the Box-Behnken design was employed with thee independent variables that is amount of ethyl cellulose (X1) and amount of carbopol 934P (X2) and stirring speed (X3) and evaluate four dependent variables such as percentage mucoadhesion, Q1 h, t90% and drug entrapment efficiency. Results: The optimum conditions were found to be X1= 200 mg, X2= 107 mg and X3= 1200rpm. The optimized batch exhibited a high drug entrapment efficiency of 85.63±1.384%, percentage mucoadhesion was 66.76±0.986% and drug release was also sustained for more than 12 h. Conclusion: The analysis of variance showed a significant effect of independent variables. The scaning electron microscopy (SEM) analysis showed that the microspheres were spherical and free-flowing. The microspheres of valsartan were stable after thee month stability study at accelerated condition.

2020 ◽  
Vol 10 (5) ◽  
pp. 182-187
Author(s):  
Manoj R. Chincholikar ◽  
Jagdish Rathi

The  present  work  is  aimed  to  formulate  Cefdinir  floating  tablets  using different  hydrophilic  and  hydrophobic  polymers  like  HPMC,  Ethyl  cellulose, Xanthum gum, guar gum and gas generating agent Sodium bicarbonate. The develop gastro retentive dosage form thatcould  retain  the  agent  namely  Cefdinir  in  the  stomach  for  longer periods of time delivering the drug to the site of action, i.e., stomach. HPMC  is  used  as  a  swelling  agent,  Guar  gum  and  Xanthum  gum  is used as binding agent. Ethyl cellulose is used as matrix form agent.  PVP is used as a suspending agent. Sodium bicarbonate is used as a gas forming agent. MCC is used as a disintergrant and diluent. Magnesium stearate is used as a lubricant. The  prepared  Cefdinir  tablets  will  be  evaluated  for  drug  content,  entrapment efficiency, post compression studies, In-vitro buoyancy studies, swelling index studies, in-vitro dissolution studies, release kinetics, stability studies.All these parameters were found to be within the pharmacopoeial limits. Formulation F5 was selected for drug release and stability study on the basis of appropriate results of post compression study.In vitro dissolution study was carried out and showed controlled release pattern. Keywords: Gas Powered Systems, Cefdinir, Controlled release, Floating drug delivery.


Author(s):  
Ashwin Kumar Saxena ◽  
Navneet Verma

Objective: The nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medications in the world because of their demonstrated efficacy in reducing pain and inflammation. The arthritis, pain and inflammation are effectively treated with Lornoxicam, an effective NSAIDs. Because the drug is weakly acidic, it is absorbed easily in the GI tract, and has a short biological half-life of 3 to 5 hours. To meet the objectives of this investigation, we developed a modified release dosage form to provide the delivery of lornoxicam at sustained rate which was designed to prolong its efficacy, reduce dosage frequency, and enhance patient compliance. The present research work was focused on the development of lornoxicam microspheres using natural polymer like okra gum extracted from the pods of Abelmoschus esculentus Linn. and synthetic polymer like ethyl cellulose along with sodium alginate prepared by Ca2+ induced ionic-gelation cross-linking in a complete aqueous environment were successfully formulated. Materials and Method: The microspheres were prepared by using sodium alginate with natural polymer (okra gum) and synthetic polymer (ethyl cellulose) in different ratios by Ca2+ induced ionic-gelation cross-linking. The formulations were optimized on the basis of drug release up to 12 hrs. The physicochemical characteristics of Lornoxicam microspheres such as drug polymer interaction study by Fourier Transform Infrared (FTIR) and further confirmation by Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). The formulated microspheres were characterized for particle size, percentage drug entrapment efficiency, micromeritic properties, surface morphology, percentage swelling index, in-vitro drug release study and mechanism of drug release. Results and Discussion: The FTIR Spectra revealed that there was no interaction between polymer and Lornoxicam which was further confirmed by DSC and XRD. All the formulated Lornoxicam microspheres were spherical in shape confirmed by SEM. The microspheres exhibited good flow properties and also showed high percentage drug entrapment efficiency. All the batches have excellent flow properties with angle of repose in the range of 25.38° ± 0.04 to 30.41° ± 0.07, carr’s index and hausner’s ratios in the range of 10.40% ± 0.018 to 16.66% ± 0.012 and 1.128 ± 0.09 to 2.225 ± 0.01, respectively. The optical microscopic studies revealed that the mean particle size of all the formulations were found in the range of 819.46 ± 0.07 to 959.88 ± 0.02 μm and percentage of drug entrapment were found to be between 72.35 ± 0.02 to 90.00 ± 0.05. Swelling index of prepared microspheres revealed that with increasing the polymer ratios, there were increase in the swelling of prepared microspheres, showing in the range of 600.76 ± 0.42 to 690.11 ± 0.03% for okra gum microspheres at the end of 9 hr in comparison with ethyl cellulose microspheres which ranges between 179.71 ± 0.07 to 227.73 ± 0.05% at the end of 7 hr. In-vitro drug release of prepared microspheres formulation code LSO4 and LSE4 were found to be 88.654 ± 0.25% and 93.971 ± 0.20% respectively at the end of 12 hr. It was suggested that increase in polymer concentration, the drug release from the prepared microspheres got retarded producing sustained release of lornoxicam. In-vitro drug release data obtained were fitted to various release kinetic models to access the suitable mechanism of drug release. Drug release from lornoxicam-loaded alginate-okra gum microspheres followed a pattern that resembled sustained release (Korsemeyer-Peppas model) (R2 = 0.9925 to 0.9951), and n ≤ 1 indicated anomalous diffusion (non-Fickian), supercase-II transport mechanism LSO4 (n = 1.039) over a period of 12 hour underlying in-vitro drug release. Moreover, zero order model (R2 = 0.9720 to 0.9949) were found closer to the best-fit Korsemeyer - Peppas model. In addition, the drug release from lornoxicam-loaded alginate-ethyl cellulose microspheres also follow Korsemeyer-Peppas model (R2 = 0.9741 to 0.9973) with near to Hixson-Crowell model (R2 = 0.9953 to 0.9985) and n < 1 indicated non-Fickian diffusion or anomalous transport mechanism. Moreover, first order model with non-Fickian diffusion mechanism (R2 = 0.9788 to 0.9918) were found closer to the best-fit Korsemeyer-Peppas model/ Hixson-Crowell model. Conclusion: The present study conclusively demonstrates the feasibility of effectively encapsulating Lornoxicam into natural polymer (okra gum) and synthetic polymer (ethyl cellulose) to form potential sustained drug delivery system. In conclusion, drug release over a period of 12 hrs, could be achieved from these prepared microspheres. A pH-dependent swelling and degradation of the optimized microspheres were also observed, which indicates that these microspheres could potentially be used for intestinal drug delivery.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (06) ◽  
pp. 21-33
Author(s):  
K. Vijaya Sri ◽  
◽  
D. Sandhya ◽  
M. Manchala ◽  
R. S Dashamukhi

The objective of present investigation was to develop and evaluation of proniosomes as the carrier of lornoxicam for topical delivery. lornoxicam-loaded proniosomes were prepared by coacervation phase separation method. The Box–Behnken design used in this study helped in identifying the factors affecting drug entrapment efficiency and drug diffusion. Proniosomes were evaluated for appearance, pH, viscosity, entrapment efficiency and in vitro drug diffusion studies. The optimized formulations were further evaluated to vesicle size, shape, zeta potential, percutaneous permeation and analgesic effect. The vesicles were found to be unilamellar, spherical in shape. The analgesic effect of lornoxicam proniosomal gel showed better therapeutic activity.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (05) ◽  
pp. 67-71
Author(s):  
R. K Panik ◽  
◽  
M. R Singh ◽  
D. Singh

Aim of the study was to develop PLGA nanoparticles (PLGA-NP) of mupirocin (MP) and to study the effect of independent variables in order to optimize the formulation for effective delivery. Drug loaded PLGA-NPs were successfully prepared by nanoprecipitation method and characterized by mean particle size, zeta potential, entrapment efficiency, drug loading, drug release, TEM, and DSC study. Independent variables like drug-polymer ratio, surfactant concentration, and stirring speed showed significant effect on the dependent variables like particle size, entrapment efficiency and drug loading. The ANOVA results showed that selected independent variables had a significant effect on the preparation of mupirocin loaded PLGA-NP.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 101
Author(s):  
Touseef Nawaz ◽  
Muhammad Iqbal ◽  
Barkat Ali Khan ◽  
Asif Nawaz ◽  
Talib Hussain ◽  
...  

Nanoparticles are used increasingly for the treatment of different disorders, including burn wounds of the skin, due to their important role in wound healing. In this study, acriflavine-loaded poly (ε-caprolactone) nanoparticles (ACR-PCL-NPs) were prepared using a double-emulsion solvent evaporation method. All the formulations were prepared and optimized by using a Box–Behnken design. Formulations were evaluated for the effect of independent variables, i.e., poly (ε-caprolactone) (PCL) amount (X1), stirring speed of external phase (X2), and polyvinyl alcohol (PVA) concentration (X3), on the formulation-dependent variables (particle size, polydispersity index (PDI), and encapsulation efficiency) of ACR-PCL-NPs. The zeta potential, PDI, particle size, and encapsulation efficiency of optimized ACR-PCL-NPs were found to be −3.98 ± 1.58 mV, 0.270 ± 0.19, 469.2 ± 5.6 nm, and 71.9 ± 5.32%, respectively. The independent variables were found to be in excellent correlation with the dependent variables. The release of acriflavine from optimized ACR-PCL-NPs was in biphasic style with the initial burst release, followed by a slow release for up to 24 h of the in vitro study. Morphological studies of optimized ACR-PCL-NPs revealed the smooth surfaces and spherical shapes of the particles. Thermal and FTIR analyses revealed the drug–polymer compatibility of ACR-PCL-NPs. The drug-treated group showed significant re-epithelialization, as compared to the controlled group.


2011 ◽  
Vol 61 (3) ◽  
pp. 257-270 ◽  
Author(s):  
Sabyasachi Maiti ◽  
Santanu Kaity ◽  
Somasree Ray ◽  
Biswanath Sa

Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium In this study, xanthan gum-facilitated ethyl cellulose microsponges were prepared by the double emulsification technique and subsequently dispersed in a carbopol gel base for controlled delivery of diclofenac sodium to the skin. Scanning electron microscopy revealed the porous, spherical nature of the microsponges. Increase in the drug/polymer ratio (0.4:1, 0.6:1, 0.8:1, m/m) increased their yield (79.1-88.5 %), drug entrapment efficiency (50.0-64.1 %), and mean particle diameter (181-255 μm). Compared to the microsponges with high drug/polymer ratio (0.8:1, m/m), the flux of entrapped drug through excised rat skin decreased by 19.9 % and 17.0 %, respectively, for the microsponges prepared at low and intermediate drug/polymer ratios. When an equivalent amount of pure drug (not entrapped into microsponges) was dispersed into the gel base and the flux was compared, the microsponges (drug/polymer ratio 0.8:1, m/m) were found to reduce the flux by 33.3 %. Whether the drug was dispersed either in un-entrapped or entrapped form into the gel base, the drug permeation through rat skin followed Higuchi's diffusion kinetic model. The microsponges prepared at the lowest drug/polymer ratio exhibited a comparatively slower drug permeation profile and were hence considered most suitable for controlled drug delivery application. FTIR spectroscopy and DSC analyses indicated the chemically stable, amorphous nature of the drug in these microsponges. The gel containing these optimized microsponges was comparable to that of a commercial gel formulation and did not show serious dermal reactions. Hence, the microsponge system obtained at the lowest drug/polymer ratio could be useful for controlled release of diclofenac sodium to the skin.


Author(s):  
SRIKANTH ◽  
ANAND KUMAR Y. ◽  
MALLIKARJUNA SETTY C.

Objective: The present research work was designed to formulate and optimize doxorubicin HCl proniosomes by design of experiment (DoE). Methods: A 4-factor, 3-level Box-Behnken design was used to explain multiple linear regression analysis and contour 3D plot responses. The independent variables selected were tween 20, cholesterol, hydration volume and sonication time; dependent variables percentage entrapment efficiency (PEE), mean vesicle size (MVS). Based on the Box-Behnken design 29 trial runs were studied and optimized for PEE and MVS. Further "Model F-Value" was calculated to confirm the omission of insignificant terms from the full-model equation to derive a multiple linear regression analysis to predict the PEE and MVS of niosomes derived from proniosomes. 3D plots were constructed to show the influence of independent variables on dependent variables. Results: PEE of doxorubicin HCl proniosomes was found to be in the range of 40.21-87.5%. The polynomial equation for PEE exhibited a good correlation coefficient (0.5524) and the "Model F-Value" of 7.41 implies the model is significant. P-values less than 0.0500 indicate model terms are significant. The MVS of doxorubicin HCl proniosomes was found to be in the range of 325.2 nm to 420.25 nm. The mathematical model generated for MVS (R2) was found to be significant with model F-value of 54.22. There is only a 0.01% chance that a "Model F-Value" this large could occur due to noise (P<0.0500) and R2 value of 0.9004. Conclusion: The DoE of Box-Behnken design demonstrated the role of the derived equation, 3D plot in predicting the values of dependent variables for the preparation and optimization of doxorubicin HCl proniosomes. The results suggest that doxorubicin HCl proniosomes can act as a promising carrier.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Sanjay Dey ◽  
Soumen Pramanik ◽  
Ananya Malgope

The aim of the current study was to formulate and optimize the formulation on the basis of in vitro performance of microsphere. A full factorial design was employed to study the effect of independent variables, polymer-to-drug ratio () and stirring speed (), on dependent variables, encapsulation efficiency, particle size, and time to 80% drug release. The best batch exhibited a high entrapment efficiency of 70% and mean particle size 290 μm. The drug release was also sustained for more than 12 hours. The study helped in finding the optimum formulation with excellent sustained drug release.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1087
Author(s):  
Wael A. Mahdi ◽  
Sarah I. Bukhari ◽  
Syed Sarim Imam ◽  
Sultan Alshehri ◽  
Ameeduzzafar Zafar ◽  
...  

The present study aims to prepare and optimize butenafine hydrochloride NLCs formulation using solid and liquid lipid. The optimized selected BF-NLCopt was further converted into Carbopol-based gel for topical application for the treatment of fungal infection. Box Behnken design was employed to optimize the nanostructure lipids carriers (NLCs) using the lipid content (A), Tween 80 (B), and homogenization cycle (C) as formulation factors at three levels. Their effects were observed on the particle size (Y1) and entrapment efficiency (Y2). The selected formulation was converted into gel and further assessed for gel characterization, drug release, anti-fungal study, irritation study, and stability study. The solid lipid (Compritol 888 ATO), liquid lipid (Labrasol), and surfactant (tween 80) were selected based on maximum solubility. The optimization result showed a particle size of 111 nm with high entrapment efficiency of 86.35% for BF-NLCopt. The optimized BF-NLCopt converted to gel (1% w/v, Carbopol 934) and showed ideal gel evaluation results (drug content 99.45 ± 2.11, pH 6.5 ± 0.2, viscosity 519 ± 1.43 CPs). The drug release study result depicted a prolonged drug release (65.09 ± 4.37%) with high drug permeation 641.37 ± 46.59 µg (32.07 ± 2.32%) than BF conventional gel. The low value of irritation score (0.17) exhibited negligible irritation on the skin after application. The anti-fungal result showed greater efficacy than the BF gel at both time points. The overall conclusion of the results revealed NLCs-based gel of BF as an ideal delivery system to treat the fungal infection.


Author(s):  
Manikandan Palanivelu ◽  

The study was aimed to prepare gastro retentive floating microsphere of Ranitidine Hydrochloride by Ionotropic Gelation technique and solvent evaporation technique by using the different carriers’ ratios (Carbopol 934, Chitosan, and sodium alginate). Both natural and synthetic polymers have been used to prepare floating microspheres and evaluated the relevant parameters. There was no drug and carrier interactions assessed from FTIR. Depending upon the ratio, the percentage yield was found between 58.33% to 90.38%. in all formulations. The surface morphology of microspheres was characterized by SEM and it was discrete, spherical in shape with rough outer surface and showed free flowing properties. The mean particle size of microspheres significantly increases with increasing polymer concentration and the range between 99.92±1.221 to 168.23±1.963 µm. Among all the formulations, RF3 showed high drug entrapment efficiency (87.52%). The percentage in-vitro buoyancy of the floating microspheres was in the range of 66.92% to 81.52%. The in-vitro drug release study revealed that RF3, RF6 and RF9 Formulations having 89.97%,92.91%,93.68% drug released at the end of dissolution studies respectively. It could be concluded that the developed floating microsphere of Ranitidine Hydrochloride can be used for prolonged release in stomach. Therefore improving the bioavailability and patient compliance.


Sign in / Sign up

Export Citation Format

Share Document