scholarly journals DESIGN EXPERT SUPPORTED FORMULATION DEVELOPMENT, MATHEMATICAL OPTIMIZATION AND PREDICTABILITY STUDY OF FLOATING TABLETS OF BISOPROLOL FUMARATE

Author(s):  
SHAIKH SHAOOR AHMAD ◽  
SHAIKH SIRAJ N. ◽  
PATEL M. SIDDIK ◽  
KHALIFA MAHMADASIF YUNUS ◽  
MAKRANI SHAHARUKH I. ◽  
...  

Objective: Focus of the study was to formulate Design expert Software assisted floating tablet of Bisoprolol Fumarate. Bisoprolol Fumarate is a Beta adrenergic blocking agent, used to treat cardiac diseases favorable characters to be formulated as sustained release Gastro retentive floating tablets. Methods: Floating Tablets of Bisoprolol Fumarate were prepared by using polymers such as Polyox N 12 K and Carbapol 940 P. Formulations were prepared by using direct compression method and evaluated for various parameters like Hradness, thickness, weight variations, Floating lag time Total floating time,% drug release and Stability Study etc. Results: FTIR spectroscopic study indicates no drug-excipients interaction in the prepared formulations. Hardness or crushing strength of the tablets of all the formulation was found between 5.8 and 6.5 kg/cm2. Floating lag time of all batches is in range of 1.18±2.0 to 2.43±1.6 (minutes). All other parameters of all batches are within an acceptable range. The polymer Carbopol 940 P had the significant negative effect of on the floating lag times. The In vitro dissolution profiles of optimized A3 Floating formulation of Bisoprolol Fumarate were found to sustain drug release 99.25 % up to 12 h with floating lag time of 1.45 min; Designed formulation was stable after Stability study. Optimization study was carried out by using 32 factorial designs to fabricate formulations. Conclusion: It can be conclude that reproducible results of various parameters in this developed formulation can easily scale up. Furthermore designed formulation will be very effective for controlling blood pressure.

2019 ◽  
Vol 9 (4-s) ◽  
pp. 298-309
Author(s):  
Sudhakar Pathak ◽  
Harish Pandey ◽  
Sunil Kumar Shah

Floating Drug Delivery Systems (FDDS) have a bulk density lower than gastric fluids and thus remain buoyant in the stomach for a prolonged period of time, without affecting the gastric emptying rate. While the system is floating on the gastric contents, the drug is released slowly at a desired rate from the system. These floating tablets mainly prepared for reduction of lag time and release the drug up to 12 hours and may also increase the bioavailability of the drugs by utilizing the drug to full extent avoiding unnecessary frequency of dosing. The purpose of this research was to develop and evaluated floating matrix tablets of sacubitril and valsartan. The floating matrix tablets of sacubitril and valsartan were prepared by direct compression method using altered concentrations of HPMC K4M, HPMC K100M, sodium alginate as polymers and sodium bicarbonate, citric acid as gas generating agent. FTIR, DSC studies conformed that there was no incompatibility between the polymers and the drug. Tablet preformulation parameters were within the pharmacopoeias limit. Tablets were evaluated by different parameters such as weight uniformity, content uniformity, thickness, hardness, in vitro release studies, buoyancy determination and kinetic analysis of dissolution data. The varying concentration of gas generating agent and polymers was found to affect on in-vitro drug release and floating lag time. Tablet showed ≤ 1min lag time, continuance of buoyancy for >12 h. The in-vitro drug release pattern of sacubitril and valsartan optimized floating tablets (F16) was fitted to different kinetic models which showed highest regression (r2 = 0.9838) for Higuchi model. The Optimized formulation (F16) showed no significant change in physical appearance, drug content, floating lag time, in vitro dissolution studies after 75%±5% RH at 40±20C relative humidity for 6 months.  Prepared floating tablets of sacubitril and valsartan may prove to be a potential candidate for safe and effective controlled drug delivery over an extended period of time for gastro retentive drug delivery system.  


2018 ◽  
Vol 8 (5) ◽  
pp. 393-399
Author(s):  
Ramdas T. Dolas ◽  
Shalindra Sharma ◽  
Madhuraj Sharma

The purpose of this research was to develop a novel gastroretentive drug delivery system based on wet granulation technique for sustained delivery of active agent. Quick GI transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to decreased efficacy of the administered dose and thus less patient compliance. Gastroretentive floating tablets, which was designed to provide the desired sustained and complete release of drug for prolonged period of time. Gastroretentive floating tablets of lafutidine were prepared by wet granulation technique using different concentrations of Gum Kondagagu, Gum olibanum and Locust bean Gum. The optimized formulation (LF14) exhibited 99.54% drug release in 12 hrs, while the buoyancy lag time was 33 sec. In-vitro drug release kinetics was found to follow both the Zero order and the possible mechanism of lafutidine release from the optimized formulation might be attributed to super case II transport mechanism. The Optimized formulation (LF14) showed no significant change in physical appearance, drug content, floating lag time, in vitro dissolution studies after 75%±5% RH at 40±20C relative humidity for 6 months. Keyword: Wet granulation, Floating lag Time, Gastroretentive, Lafutidine


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (08) ◽  
pp. 31-37
Author(s):  
V Nalawade ◽  
◽  
O Miranda ◽  
A Kushare ◽  
A. Mhadgut

In vitro testing is of paramount importance both in formulation development and in optimization of any pharmaceutical dosage form. Dissolution testing is a quality control test used to check batch to batch variability The main objective of this study was to determine the impact of various parameters like volume of the buffer used, the rotational speed of the paddle and temperature over the percentage drug release in a particular time frame. The collected data was analyzed using Design Of Experiments (DOE) software in order to optimize the dissolution parameters for the marketed paracetamol tablet formulation. A marketed batch of paracetamol tablets was used for the present study. The obtained results showed that the standard percent cumulative drug release was maintained even when the dissolution parameters were refashioned and thus provided a substantial waiver of exploitative use of water resources for the in vitro dissolution testing for paracetamol tablets making it a greener method.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 445-450
Author(s):  
Bharti Patle ◽  
Vivek Jain ◽  
Shradha Shende ◽  
Prabhat Kumar Jain

Floating drug delivery systems are the gastroretentive forms that precisely control the release rate of target drug to a specific site which facilitate an enormous impact on health care. The purpose of this research was to develop a novel gastro retentive drug delivery system based on direct compression method for sustained delivery of active agent to improve the bioavailability, reduce the number of doses and to increase patient compliance. Gastro retentive floating tablets of Prochlorperazine dimaleate (PCZ) were prepared by direct compression method using altered concentrations of HPMC K4, HPMC K15 and PVP K30 as polymers. The prepared tablets of PCZ were evaluated for hardness, thickness, friability, weight variation, drug content uniformity, buoyancy lag time, total floating time, in-vitro dissolution study, etc. All the compositions were resulted in adequate Pharmacopoeial limits. Compatibility studies was execution during FTIR shown that there was absence of probable chemical interaction between pure drug and excipients. The varying concentration of gas generating agent and polymers was found to affect on in-vitro drug release and floating lag time. In vitro drug release of floating gastro retentive tablet of PCZ shown that the formulation F9 was found to be the best formulation as it releases 98.89% in a controlled manner for an extended period of time (up to 12 hrs). The release data was fitted to various mathematical models such as Higuchi, Korsmeyer-Peppas, First order and Zero order to evaluate the kinetics and mechanism of the drug release. The optimized formulation (F9) showed no significant change in physical appearance, drug content, floating lag time, in vitro dissolution studies after 75%±5% RH at 40±20C relative humidity for 6 months.  Prepared floating tablets of PCZ may prove to be a potential candidate for safe and effective controlled drug delivery over an extended period of time for gastro retentive drug delivery system. Keywords: Prochlorperazine dimaleate, Floating tablet, Gastro retentive, Total floating time.


2021 ◽  
Vol 20 (1) ◽  
pp. 19-29
Author(s):  
Nilima A Thombre ◽  
Pradeep S Ahire ◽  
Sanjay J Kshirsagar

In the current investigations, mouth dissolving tablets (MDT) were developed by applying quality by design (QbD) approach. Direct compression method was applied for the preparation of MDT containing aspirin using 32 factorial design with quantity of drug, microcrystalline cellulose (MCC) and crosscarmellose sodium (CCS) as dependant variables. MCC and CCS were used as superdisintegrants. Sodium stearyl fumarate was used as lubricant. Developed MDT were evaluated for characteristics like hardness, friability, disintegration time (DT) and in vitro drug release . Design Expert 11.0 described adequately impact of selected variables (MCC and CCS) at various levels for response under study (DT and friability). The optimized batch showed disintegration time of 15-28 secs, friability within 1% and in vitro drug release of 75-98% after 30 mins, respectively. The present study of experimental design revealed that MCC and CCS are fruitful at low concentration to develop the optimized formulation. As per the results obtained from the experiments, it can be concluded that QbD is an effective and efficient approach for the development of quality into MDT with the application of QTPP, risk assessment and critical quality attributes (CQA). Dhaka Univ. J. Pharm. Sci. 20(1): 19-29, 2021 (June)


Author(s):  
Pranali Shivaji Salunkhe

ABSTRACTGastroretentive floating drug delivery system is utilised to target drug release in the stomach or to the upper part of intestine. Lansoprazole is proton pump inhibitor intended for oral administration used as antiulcer agent. The present investigation involved formulation and evaluation of Gastroretentive floating tablets of Lansoprazole for prolongation of gastric residence time with a view to deliver the drug at sustained and controlled manner in gastrointestinal tract. The tablets of Lansoprazole were prepared by direct compression method using gas generating agent and different polymer combinations (HPMCK4M, HPMC K100M, Psyllium husk) . The prepared tablets of Lansoprazole were evaluated for hardness, thickness, friability, weight variation, drug content uniformity, buoyancy lag time, total floating time, swelling index, in-vitro dissolution study. The varying concentration of gas generating agent and polymers were found to affect on in-vitro drug release, floating lag time and swelling index. In vitro drug release of floating Gastroretentive tablet of Lansoprazole shown that the formulation F2 was found to be the best formulation as it releases 97.9% Lansoprazole in a controlled manner for extended period of time (upto 12 hrs.)Keywords: Lansoprazole, Gastroretentive, floating tablet, total floating time.


Author(s):  
MEGHANA RAYKAR ◽  
MALARKODI VELRAJ

Objective: This study aims to Formulate Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate with the increase in bioavailability and patient compliance. Methods: Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate were developed by full factorial design at 32levelsand prepared by direct compression method using super integrants like sodium starch glycolate, Ludiflash. The tablets were compressed into compacts on a 10 station tablet machine. The bulk drug was characterised by determining, MP, Solubility, pH and FTIR spectra. Results: The weight variation, hardness and diameter, thickness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies, and stability study, tablet thickness, weight variation and drug content post compression parameters remained consistent and reproducible. All the formulations showed, almost 100 percent of drug release within 75 min. Formulations F1, F2 and F3 were prepared with 5 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F1<F2<F3. Formulations F4, F5 and F6 were prepared with 10 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F4<F5<F6. Formulations F7, F8 and F9 were prepared with 15 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F7<F8<F9. Conclusion: It is concluded that the amount of superdisintegrants decreases disintegration time of tablets, decreases wetting time, increases the cumulative % drug release causes better absorption.


Author(s):  
Rutu H. Patel ◽  
ImadHadi Hameed ◽  
Kunal N. Patel ◽  
Madhabhai M. Patel

The aim of the present study to prepare Pulsatile release tablet of naproxen for the treatment of rheumatoid arthritis. The drug delivery system was designed to deliver the drug at a time when it could be most needful for the patient. Drug excipient compatibility studies were carried out using DSC and found to be compatible with each other. Pulsatile tablet was prepared by direct compression method using different type and amount of superdisintegrants and coating polymers and evaluated for pre and post compression parameters. Box Behnken design was applied to optimize responses. Concentrations of Sodium starch glycolate (SSG) (X1), Ethyl cellulose (EC) (X2), and HPMC K100M (X3) were selected as independent variables while Lag time (Y1) and % drug release at 8 hrs (Y2) were selected as dependent variables. The prepared tablets were evaluated for post compression parameters and results indicated that concentration of SSG has major effect on in vitro drug release while concentration of EC and HPMC K100M has major effect on Lag time. Batch BE13 prepared with SSG 35mg, EC 175mg, and HPMC K100M 75 mg was found to be best batch as it achieves predetermined lag time of 5 hr 02 min and 99.32% of drug release. There was no significant variation in formulation at the end of six month accelerated stability study.


Author(s):  
A. Bhavani ◽  
B. Hemalatha ◽  
K. Padmalatha

The present focus is on the development of sustained release formulations due to its inherent boons. There are several advantages of sustained release drug delivery over conventional dosage forms like improved patient compliance, reduction in fluctuation and increased safety margin of potent drug. The present study was aimed to prepare a sustained drug delivery system to design a controlled release oral dosage form of Cefpodoxime proxetil. The sustained release matrix tablets of Cefpodoxime proxetil were prepared by wet granulation and evaluated for different parameters such as weight variation, drug content, thickness, hardness, friability and In vitro release studies. The in vitro dissolution study was carried out for 12 hours using USP (Type- II) paddle apparatus in hydrochloride (0.1N) as dissolution media for first 2 hours and phosphate buffer (pH 6.8) for next 10 hours. Based on the in vitro dissolution data, formulation F8 was selected as the best formulation from Cefpodoxime proxetil formulations (F1 – F9) as the drug release was retarded up to 12 hours with 96.29 % and followed zero order release kinetics & drug release mechanism was diffusion.


1970 ◽  
Vol 7 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Ferdous Khan ◽  
Md Shaikhul Millat Ibn Razzak ◽  
Md Ziaur Rahman Khan ◽  
Kazi Rashidul Azam ◽  
Sams Mohammad Anowar Sadat ◽  
...  

This investigation describes the preparation and in vitro evaluation of gastroretentive floating tablets of theophylline. Hydrophilic polymer METHOCEL K4M was used for its gel forming and release controlling properties. Sodium bicarbonate and citric acid were incorporated as gas generating agents. The effects of soluble components (sodium bicarbonate and citric acid), gel forming agent (METHOCEL K4M) and dose variation on drug release profile and floating properties were investigated. It has been observed that in all cases increase of the amount of floating agent caused a decrease of the floating lag time. Increase of theophylline load showed an increase of the floating lag time, which was independent of floating agent content. The release mechanisms were explored and explained with zero order, first order, Higuchi, Korsmeyer and Hixon-Crowell equations. The release rate, extent and mechanisms were found to be governed by the content of polymer and floating agent. The content of active ingredient was also a vital factor in controlling drug release pattern. It was found that polymer content and amount of floating agent significantly affected the time required for 50% of drug release (T50%), percentage drug release after 8 hours, release rate constant, and diffusion exponent (n). Kinetic modeling of dissolution profiles revealed that the drug release mechanism could range from diffusion controlled to case II transport, which was mainly dependent on presence of relative amount of theophylline, polymer and floating agent. Key words: Gastroretention, Floating tablet, Theophylline  DOI = 10.3329/dujps.v7i1.1220 Dhaka Univ. J. Pharm. Sci. 7(1): 65-70, 2008 (June)


Sign in / Sign up

Export Citation Format

Share Document