scholarly journals STABILITY INDICATING RP-HPLC ASSAY METHOD FOR ESTIMATION OF MIDODRINE HYDROCHLORIDE IN BULK AND TABLETS

Author(s):  
Hemant K. Jain ◽  
Kishor N. Gujar ◽  
Varsha A. Randhe

<p><strong>Objective: </strong>To develop an accurate, simple, sensitive and precise stability indicating reverse phase-high performance liquid chromatographic (RP-HPLC) assay method for estimation of Midodrine hydrochloride (MD) in bulk and tablets.</p><p><strong>Methods: </strong>The chromatographic separation was performed on enable C<sub>18</sub>, (250 mm X 4.6 mm, 5 μm) column. The mobile phase consists of triethylamine buffer 0.02%, pH-3: acetonitrile (38:62 v/v) was delivered at a flow rate of 0.6 ml/min and UV detection at 289 nm. The method was validated with forced degradation studies as per ICH guidelines.</p><p><strong>Results: </strong>The retention time of the drug was found to be 3.56 min. The developed method was found to be linear in a concentration range of 19.98-99.9μg/ml of the drug (r<sup>2</sup>= 0.9998). The low value of % RSD indicates reproducibility of the method. The low value of LOD and LOQ suggests the sensitivity of the method. The results of forced degradation studies indicated that the drug was stable in acidic condition and degraded in basic, oxidative and hydrolytic conditions.</p><strong>Conclusion: </strong>The present study represents first stability-indicating HPLC assay method that deals with the estimation of midodrine hydrochloride. It can be concluded from the results that the developed method is simple, rapid, accurate, specific, sensitive and precise. Thus, this method can be used for routine analysis of midodrine hydrochloride formulation and to check the stability of bulk samples.<p> </p>

2017 ◽  
Vol 9 (5) ◽  
pp. 121 ◽  
Author(s):  
Hemant K. Jain ◽  
Archana A. Gunjal

Objective: To develop an accurate, simple, precise and specific stability indicating RP-HPLC method for estimation of dimethyl fumarate in bulk and capsules.Methods: An Inertsil ODS (150x4.6 mm, 5µ) column and a mobile phase containing acetonitrile: potassium dihydrogen phosphate buffer pH 6.8 (50:50% v/v) was used for this study. The flow rate was maintained at 1.0 ml/min; column temperature was fixed at 35 °C and UV detection was carried out at 210 nm. The forced degradation studies were performed and method was validated with as per ICH guidelines.Results: The retention time of dimethyl fumarate was found to be 3.3±0.02 min. The value of correlation coefficient between peak area and concentration was found to be 0.9993. The mean percent recovery of dimethyl fumarate in capsules was found in the range of 99.65 to 101.64%. The results of forced degradation studies indicated that the drug was found to be stable in basic, oxidative and thermal conditions while degraded in acidic conditions.Conclusion: It can be conducted from results that the developed HPLC method is simple, accurate, precise and specific. Results of stress testing study revealed that the method is stability indicating. Thus, this method can be used for routine analysis of dimethyl fumarate capsules and check their stability.  


Author(s):  
Meetali M. Chaphekar ◽  
Purnima Hamrapurkar

The concept of Quality by design (QbD) has recently gained importance in the area of analytical method development and involves understanding of the critical factors and their interaction effects by a desired set of experiments. So, the present work describes the development of Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) method by QbD approach using Design of Experiments and subsequent validation for analysis of Vildagliptin in bulk drug and its pharmaceutical formulation. An efficient experimental design based on systematic scouting of all three key components of the RP‐HPLC method (Buffer pH, Organic Phase-% acetonitrile, Organic Modifier-Methanol) is presented. The significance and interaction effects of these parameters on the response variables (Retention time and tailing factor) were evaluated through statistical analysis tools like Analysis of Variance (ANOVA) and plots which revealed the final chromatographic conditions of the method. The developed method was validated and Forced degradation studies were also carried out in order to determine the stability-indicating nature of the method. The chromatographic separation was achieved on Jasco CrestPack RP C18 (250 × 4.6 mm, 5μ) column using Buffer (pH 6): Acetonitrile: Methanol (70:10:20 v/v) as mobile phase and detection was done using Photo-Diode Array (PDA) detector at 210 nm. The developed method of Vildagliptin is linear over a range of 5-15μg/ml having correlation coefficient R2 value as 0.999. The %RSD for precision and accuracy of the method was found to be less than 2%. Forced Degradation studies revealed that the method was found to be stability-indicating. The results showed that the proposed method is suitable for the precise and accurate determination of Vildagliptin in bulk and its formulation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dimal A. Shah ◽  
Ishita I. Gondalia ◽  
Vandana B. Patel ◽  
Ashok Mahajan ◽  
Usmangani Chhalotiya ◽  
...  

Abstract Background A sensitive, precise, and stability-indicating high-performance thin-layer chromatographic (HPTLC) method has been developed for the analysis of Remogliflozin etabonate in tablet formulation. HPTLC plates precoated with silica gel 60 F254 were used as the stationary phase; methanol: ethyl acetate: toluene: NH3 (2:4:4:0.1, v/v/v) was used as mobile phase, and densitometry was used for the quantitative estimation of the drug. The proposed method was validated with respect to linearity, accuracy, precision, and robustness and applied for the estimation of drug in tablet dosage form. Results The Rf value of Remogliflozin etabonate was observed to be 0.61. The densitometric estimation was performed in reflectance mode at 229 nm. The method was found to be linear in the range of 500–8000 ng/band for Remogliflozin etabonate. The possible degradation pathway was estimated by performing forced degradation studies. The degradant peaks were well resolved from the drug peak with acceptable resolution in their Rf value. Conclusion An accurate and precise high-performance thin-layer chromatographic method has been developed for the quantification of Remogliflozin etabonate in tablets. Forced degradation studies were performed, and drug was found to be highly susceptible to acid, base hydrolysis, and oxidative stress degradation and gets converted into active drug Remogliflozin. Both Remogliflozin etabonate and Remogliflozin bands were well resolved. The method was applied for the analysis of drug in tablet formulation, and it can be used for routine quality control analysis, as well as for the analysis of stability samples.


Author(s):  
T Hemant Kumar ◽  
CH. ASHA ◽  
D. GOWRI SANKAR

Objective: To develop and validate a simple, specific, accurate, precise and sensitive reverse phase high performance liquid chromatographic (RP-HPLC) method with forced degradation studies for the simultaneous estimation of amlodipine besylate and irbesartan in the pharmaceutical formulation. Methods: The chromatographic separation of the two drugs were achieved using Enable C 18G column (250 ×4.6 mm; 5 µm) in isocratic mode with mobile phase consisting of sodium acetate buffer (pH 4.0) and acetonitrile (30:70, % v/v) with a flow rate of 0.6 ml/min. Ultraviolet(UV) detection was carried out at 238 nm. The proposed method was validated for linearity, range, accuracy, precision, robustness, limit of detection (LOD) and limit of quantification (LOQ). The tablet formulation was subjected to stress conditions of degradation including acidic, alkaline, oxidative, thermal and photolysis. Results: The retention time for amlodipine besylate and irbesartan were found to be 5.512 and 6.321 min respectively. Linearity was observed over a concentration range 4-32 µg/ml for amlodipine besylate (r2 =0.9999) and 10-70 µg/ml for Irbesartan (r2 =0.9998). The % relative standard deviation (RSD) for Intraday and Interday precision was found to be 0.436 and 0.699 for amlodipine besylate and 0.435 and 0.30 for irbesartan. Amlodipine besylate shown stability towards acidic and thermal whereas in basic, oxidative and photolytic it shown less stability in which it degraded to more extent. Irbesartan shown stability towards thermal conditions whereas in remaining conditions it degrades to more extent especially in oxidative conditions. Conclusion: The developed reverse phase high performance liquid chromatographic (RP-HPLC) method was also found to be simple, precise and sensitive for the simultaneous determination of amlodipine besylate and irbesartan in the tablet dosage form.


2021 ◽  
Vol 10 (6) ◽  
pp. 3823-3826
Author(s):  
, Shyamala

Forced degradation studies and stability indicating method were developed for the estimation of Favipiravir by reverse phase High performance liquid chromatography in active Pharmaceutical ingredient and its tablet dosage form. The method was achieved by using C18 column (250 X 4.6mm X 4µm) with mobile phase mixture ortho phosphoric acid and acetonitrile in the ratio 60:40. The mobile phase was allowed to pump with the flow rate 1ml/min by maintaining detection wavelength at 324nm using ultra-violet detector. Favipiravir drug was subjected to various stress conditions according to International Conference of Harmonization Q1A(R2) guidelines to establish stability indicating method. Favipiravir drug was found to be sensitive at peroxide degradation. The impurity peak was characterized by mass spectral studies. The method was validated for analytical standards such as linearity, accuracy, Precision, sensitivity and robustness. A rapid and sensitive method was developed for the estimation of favipiravir which indicates its stability indicating behavior.


Author(s):  
Juluri Krishna Dutta Tejaswi ◽  
Govinda Rajan R

Objective: A stability indicating reverse-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for the estimation of emtricitabine (EMT), rilpivirine (RIL), and tenofovir alafenamide (TAF) in combined dosage forms and its API.Methods: Chromatographic separation was achieved on Waters ACQUITY RP-HPLC with PDA detector having Zodiac C18 Column (250×4.6×5μ) using mobile phase mixture of phosphate buffer: acetonitrile in the ratio of 40:60 v/v at 262 nm.Results: The assay was performed with tablets, and the % assay was found to be 100.104 for EMT, 99.74 for RIL, and 102.41 for TAF which shows that the method is useful for routine analysis. The linearity was found to be linear with a correlation coefficient of 0.999, which shows that the method is capable of producing good sensitivity. The retention time (RT) of EMT, RIL, and TAF using optimum conditions was found to be 2.517, 3.273, and 6.697 min. Forced degradation studies (FDS) were performed on sample using acid, base, thermal, photolytic, and peroxide degradation.Conclusion: Due to its simplicity, rapidness, high precision, and low RT value, this method was successfully applied to the estimation of EMT, RIL, and TAF combined dosage form. The drugs were found to be stable at FDS, and the net degradation was found to be within the limits.


2010 ◽  
Vol 7 (s1) ◽  
pp. S239-S244 ◽  
Author(s):  
Shaik Mastanamma ◽  
G. Ramkumar ◽  
D. Anantha Kumar ◽  
J. V. L. N. Seshagiri Rao

A stability indicating RP HPLC method has been developed for the determination of gemcitabine hydrochloride. Chromatography was carried out on an ODS C18column (250×4.6 mm; 5μ) using a mixture of methanol and phosphate buffer (40: 60 v/v ) as the mobile phase at a flow rate of 1.0 mL/min. The detection of the drug was monitored at 270 nm. The retention time of the drug was found to be 2.31 min. The method produced linear responses in the concentration range of 10 to 60 μg/mL of gemcitabine HCl. The method was found to be reproducible for analysis of the drug in injectable dosage forms. The stability of the drug was assessed by forced degradation studies.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Mohamed H. M. Hamid ◽  
Tilal Elsaman

A new naproxen amide prodrug was synthesized and spectrally characterized and a simple, precise, and accurate stability-indicating RP-HPLC method was developed and validated for determination and chemical hydrolysis study of the prodrug. Forced degradation studies were conducted as per the International Conference on Harmonization (ICH) guidelines to establish the stability-indicating power of the method. Separations were performed on a C18 column (150 × 4.6 mm i.d., 5 μm p.s.). The mobile phase consisted of acetonitrile and phosphate buffer pH 4.0 in the ratio 60 : 40. The flow rate and injection volume were 1.0 mL/min and 15 μL, respectively. The peaks were monitored at 272 nm. The average retention time is 5.136 min. The linearity of the method was investigated in the range of 10–50 μg/mL and r2 was found to be larger than 0.9987. The LOD and LOQ were found to be 1.853 and 5.615 μg/mL, respectively. Results indicated that the degradants are well resolved and separated from the prodrug. Hydrolysis kinetics studies were carried out in buffer solutions (pH 1.2, 5.5 and 7.4) to establish the fate of the prodrug. The half-lives in the respective buffers were 23.5, 262, and 334 hours indicating sufficient stability to attain the goal of oral delivery.


Author(s):  
SADASHIVAIAH R. ◽  
Rohith G. ◽  
SATHEESHA BABU B. K.

Objective: A simple, economical, robust and stability-indicating reverse phase high performance liquid chromatography method was developed and validated for the quantification of ropinirole hydrochloride in API and tablets to achieve shorter retention time, to minimize human error by avoiding the use of buffers and weighing procedure and analyze more number of samples in shorter period of time with good accuracy. Methods: The chromatographic conditions for separation of ropinirole hydrochloride was carried out using Gemini NX C18 column (15 cm x 4.6 mm), 5 µm particle size with the mobile phase composing of methanol: acetonitrile (70:30 v/v), delivered at flow rate 0.7 ml/min and UV detection wavelength at 250 nm. Results: The retention time was observed at 2.718 min. The system suitability results were found to be within limits. The method was precise, with lower than 2 %RSD and the calibration curve was linear (r2=1) over a concentration range of 2.5-160 µg/ml. The detection and quantification limit was found to be 0.045 µg/ml and 0.15 µg/ml, respectively. Recovery of the drug was found between 100.09-100.19%. The assay of ropinirole hydrochloride in ROPITOR® and ROPARK® tablets were found to be 100.4 and 103.60 %, respectively. The forced degradation studies were carried out to demonstrate the specificity of the method by exposing the API under conditions of hydrolysis, oxidation, thermal and photolytic as per ICH Q1A(R2) guidelines. Conclusion: The low coefficient of variation and agreeable recovery confirmed that the newly developed method could be employed for routine analysis of ropinirole hydrochloride in API and tablets.


Sign in / Sign up

Export Citation Format

Share Document