scholarly journals FLASH DISSOLVING SUBLINGUAL ALMOTRIPTAN MALATE LYOTABS FOR MANAGEMENT OF MIGRAINE

Author(s):  
Abeer Ahmed Kassem ◽  
Gihan Salah Labib

<p><strong>Objective: </strong>Development of sublingual fast dissolving lyophilized almotriptan tablets, to enhance its pre-gastric absorption and so alleviating the gastrointestinal dysmotility that is commonly associated with migraineurs.</p><p><strong>Methods: </strong>Primary almotriptan lyophilized tablets (Alm-lyotab), were prepared using polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), gelatin, or sodium alginate, as a bulk forming agent and mannitol as a disintegrant, cryoprotectant and taste improver. Physical properties, wetting time, <em>in vitro</em> dissolution and disintegration behaviour, were investigated. A combination of PVP, gelatin and chitosan in different ratios with mannitol were developed and characterised for further improvement. Optimised formula was examined by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR).</p><p><strong>Results: </strong>Both PVP and gelatin primary formulations showed elegant appearance with fast <em>in vitro</em> disintegration time of 5.67 and 5.64 sec, short wetting time of 4.06 and 4.05 sec, respectively, and high <em>in vitro</em> release rate of about 80% after 1 min, thus they were selected for further improvement. Optimised formula from polymer blend formulations (F8) which consisted of PVP: gelatin: chitosan in a ratio of its constituting solutions of 1:5:0.5, exhibited an elegant appearance, drug content of 98.75 %, <em>in vivo</em> disintegration time of 1.85 sec and complete drug release within 1 min. SEM micrographs revealed spongy, highly porous structure. DSC results indicated the presence of the drug in its crystalline form. FTIR studies revealed no interaction between the drug and excipients.</p><p><strong>Conclusion: </strong>Sublingual instantly dissolving Almo-lyotab was successfully developed and may constitute an advance in the management of acute migraine attacks.</p>

Author(s):  
MERVAT SHAFIK IBRAHIM ◽  
NIHAL MOHAMED ELMAHDY ELSAYYAD ◽  
ABEER SALAMA ◽  
SHEREEN H. NOSHI

Objective: This study aims to prepare and optimize indomethacin freeze-dried sublingual tablets (IND-FDST) by utilizing a quality by design (QbD) approach to achieve rapid drug dissolution and simultaneously bypassing the GIT for better patient tolerability. Methods: A screening study was utilized to determine the most significant factors which the quality attributes, namely disintegration time and % friability. Then an optimization study was conducted using a full response surface design to determine the optimized formula by varying the amount of the matrix-forming polymer (gelatin) and super disintegrant (croscarmellose sodium (CCS)). The variables' effect on the % friability, disintegration time, wetting time, and amount of drug release after 10 min (%Q10) was studied. The optimized formula was tested for compatibility, morphology as well as stability studies under accelerated conditions in addition to the in vivo pharmacodynamics in rats. QbD was adopted by utilizing a screening study to identify the significant formulation factors followed by a response surface optimization study to determine the optimized IND-FDST formulation. Results: Optimized IND-FDST comprised of gelatin/CCS combination in a ratio of 1:1 possessed adequate %friability (0.73±0.03%), disintegration time (25.40±1.21 seconds), wetting time (3.49±0.68 seconds), and % Q10 (100.99±5.29%) as well as good stability under accelerated conditions. IND-FDST also showed significant inhibition of edema, tumour necrosis factor-alpha, and interleukin-6 release in vivo compared to the oral market product by 70%, 42%, and 65%, respectively. Conclusion: QbD presents a successful approach in the optimization of a successful IND-FDST formula that showed superior in vivo and in vitro characteristics.


2019 ◽  
Vol 9 (2) ◽  
pp. 160-169
Author(s):  
Rada Santosh Kumar ◽  
T. Naga Satya Yagnesh

The current scenario deals with the study of fast dissolving tablets for the patients suffering from swallowing, sickness ,etc.  The present investigation involves in the evaluation of starch tartrate as a superdintegrant in the formulation of fast dissolving tablets of poorly soluble drugs employing 23factorial design. Starch tartrate was synthesized by esterification process. The synthesized starch tartrate was subjected to physical and micromeritic evaluation. All fast dissolving tablets were evaluated for drug content, hardness, friability, disintegration time and other dissolution characteristics like percent dissolved in 5 min (PD5), dissolution efficiency in 5 min (DE5%) and first order rate constant(K1). The starch tartrate prepared was found to be fine, free flowing slightly crystalline powder. Starch tartrate exhibited good swelling in water.Fourier transform infrared spectra (FTIR) and Differential scanning calorimetry (DSC) study indicated the absence of interaction between ibuprofen and starch tartrate. All the fast dissolving tablets formulated employing starch tartrate were of good quality with regard to drug content (200±5%), hardness (3.6–3.9 kg/sq. cm), and friability (0.12-0.15%). The optimised formulation F2 has the least disintegration time i.e., 9±0. 03s. The in–vitro wetting time was less (i.e., 60s) in optimized formulation F2. The water absorption ratio of the formulated tablets was found to be in the range of 27.53±0.12 to 69.75±0.18%. The cumulative drug dissolved in the optimized formulation F2 was found to be 100.17±0.56% in 5 min. Starch tartrate was found to be a superdisintegrant which enhanced the dissolution efficiency with the ibuprofen and hence it could be used in the formulation of fast dissolving tablets to bring immediate release of the contained drug within 5 minutes. Keywords: Fast dissolving, Superdisintegrant, Starch tartrate, Dissolution efficiency.


2021 ◽  
Vol 12 (3) ◽  
pp. 3883-3899

Liquisolid approach is a potential method due to the ease in the production process, low cost, and manufacturing process because of their strong flow and compaction properties. The study's main goal is to create a liquisolid powder formulation from the polyherbal extract and evaluate its anti-inflammatory activity. Hibiscus cannabinus, Murraya koenigii, and Tabernaemontana divaricate are used to formulating polyherbal Liquisolid powder formulation to assess their anti-inflammatory action. The formulation is tested for its stability studies and anti-inflammatory activity, both in-vitro and in-vivo. The polyherbal liquisolid powder formulation (F5) has a minimum strength of 1kg/cm 2, while F2 & F6 strength was 4 kg/cm2; FTIR studies showed no interactions between drug and excipients. To confirm the liquisolid powder formulation, further evaluations on friability, hardness, disintegration time, dissolution rate, and Differential scanning calorimetry and X-ray powder diffraction analysis were determined. The polyherbal extract's anti-inflammatory activities were evaluated using the paw edema and cotton pellet method, and the results are found to exhibit its inhibitory activity. The polyherbal extract of Liquisolid powder formulation was evaluated, and it showed a promising inhibitory activity to overcome the inflammation in the test species. Hence it can be used as an alternative therapy for curing inflammation.


Author(s):  
Santosh Kumar Rada ◽  
ANKITA GHOSH

Objective: To enhance the solubility of poorly soluble drugs by evaluating starch tartrate as a superdisintegrant in the formulation of fast dissolving tablets by employing 23 factorial design. Methods: Starch tartrate was synthesized by gelatinization process. The physical and micromeritic properties were performed to evaluate the synthesized starch tartrate. The fast dissolving tablets of piroxicam were prepared by using starch tartrate as a superdisintegrant in different proportions by direct compression technique using 23 factorial design. The drug content, hardness, friability, disintegration time and other dissolution characteristics like percent dissolved in 5 min (PD5), dissolution efficiency in 5 min (DE5%) and first-order rate constant (K1) were used in the evaluation of prepared fast dissolving tablets. Results: The superdisintegrant starch tartrate prepared was found to be fine, free-flowing slightly crystalline powder. Starch tartrate exhibited good swelling in water. The study between piroxicam and starch tartrate was shown the absence of interaction by fourier transform infrared spectra (FTIR) and differential scanning calorimetry (DSC). The drug content (99.83±0.56 %), hardness (3.7–3.9 kg/sq. Cm), and friability (0.12-0.15%) have been effective with regard to all the formulated fast dissolving tablets employing starch tartrate. The disintegration time of all the formulated fast dissolving tablets (FDTs) was found to be in the range of 12±0. 01 to 4500±0.02s. The optimized formulation F6 has the least disintegration time i.e., 12±0. 01s. The In vitro wetting time of the formulated tablets was found to be in the range of 35±0.09 to 1624±0.02s. The In–Vitro wetting time was less (i.e., 90s) in optimized formulation F6. The water absorption ratio of the formulated tablets was found to be in the range of 60±0.12 to 65±0.15%. The cumulative drug dissolved in the optimized formulation F6 was found to be 99.32±0.09% in 10 min. Conclusion: The dissolution efficiency of piroxicam was enhanced when starch tartrate was found to be a superdisintegrant when combined with crospovidone and, hence it could be used in the formulation of fast dissolving tablets to provide immediate release of the contained drug within 10 min.


2017 ◽  
Vol 9 (5) ◽  
pp. 51
Author(s):  
R. Santosh Kumar ◽  
T. Naga Satya Yagnesh ◽  
V. Goutham Kumar

Objective: To evaluate starch xanthate as a super disintegrant in the formulation of fast dissolving tablets of poorly soluble drugs employing 23 factorial design.Methods: Starch xanthate was synthesized by gelatinization process. The synthesized starch xanthate was subjected to physical and micromeritic evaluation. To establish as starch xanthate as a super disintegrant, fast dissolving tablet of ibuprofen was prepared employing starch xanthate in different proportions in each case by direct compression method employing 23 factorial design. All fast dissolving tablets prepared were evaluated for drug content, hardness, friability, disintegration time and other dissolution characteristics like percent dissolved in 5 min (PD5), Dissolution efficiency in 5 Min (DE5%) and first order rate constant(K1).Results: The starch xanthate prepared was found to be fine, free flowing slightly crystalline powder. Starch xanthate exhibited good swelling in water. Fourier transform infrared spectra (FTIR) and Differential scanning calorimetry (DSC) study indicated the absence of interaction between Ibuprofen and starch xanthate. All the fast dissolving tablets formulated employing starch xanthate were of good quality with regard to drug content(100±5%), hardness (3.6–4 kg/sq. cm), and friability (0.12-0.15%). The disintegration time of all the formulated tablets was found to be in the range of 13±0. 02 to 108±0.02s. The optimised formulation FL7 has the least disintegration time i.e., 13±0. 02s. The In vitro wetting time of the formulated tablets was found to be in the range of 90±0.15 to 369±0.17s. The In–Vitro wetting time was less (i.e., 90s) in optimized formulation FL7. The water absorption ratio of the formulated tablets was found to be in the range of 94±0.16 to 192±0.15%. The cumulative drug dissolved in the optimized formulation FL7 was found to be 99.63±0.24% in 5 min.Conclusion: Starch xanthate was found to be a super disintegrant which enhanced the dissolution efficiency when combined with sodium starch glycolate, croscarmellose sodium, with the ibuprofen and hence it could be used in the formulation of fast dissolving tablets to provide immediate release of the contained drug within 5 min.


Author(s):  
SANTOSH KUMAR R ◽  
ANNU KUMARI

Objective: The objective of the present research was to prepare starch phthalate (a novel superdisintegrant) and to optimize and formulate acyclovir fast dissolving tablets employing 23 factorial design using starch phthalate as superdisintegrant. Materials and Methods: Drug excipient compatibility studies such as Fourier-transform infrared spectroscopy, differential scanning calorimetry, and thin-layer chromatography were carried out to check the drug interaction between acyclovir and starch phthalate. The direct compression method was used for tablet preparation. Prepared tablets were then evaluated for hardness, friability, drug content, disintegration time, water absorption, and wetting time, in vitro dissolution studies. Response surface plots and contour plots were also plotted to know the main effects and interaction effects of independent variables (starch phthalate [A], croscarmellose sodium [B], and crospovidone [C] on dependent variables [disintegration time and drug dissolution efficiency in 1 min]) and stability studies were also done. Results: Tablets of all formulations were of good quality concerning drug content (100±5%), hardness (3.6–4.0 kg/cm2), and friability (<0.16%). In all formulations, formulation F8 found to be optimized formulation with least disintegration time 9±3 s, less wetting time 10±0.17 s, and enhanced dissolution rate in 1 min, i.e., 99.92±0.11 as compared to other formulation. Conclusion: From the research, it was concluded that on combination with crospovidone (5%) and croscarmellose sodium (5%), starch phthalate (10%) enhanced the dissolution efficiency of the drug. Hence, starch phthalate can be used as a novel disintegrant in the manufacturing of fast dissolving tablets.


2018 ◽  
Vol 10 (6) ◽  
pp. 249
Author(s):  
Santosh Kumar Rada ◽  
T. Naga

Objective: To synthesize, characterize and evaluate starch xanthate as a superdisintegrant in the formulation of fast dissolving tablets by employing 23 factorial design.Methods: Starch xanthate was synthesized by gelatinization process. The physical and micromeritic properties were performed to evaluate the synthesized starch xanthate. The fast dissolving tablet of ibuprofen was prepared by employing starch xanthate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design. The drug content, hardness, friability, disintegration time and other dissolution characteristics like percent dissolved in 5 min (PD5), dissolution efficiency in 5 min (DE5%) and first order rate constant (K1) were used in the evaluation of prepared fast dissolving tablets.Results: The starch xanthate prepared was found to be fine, free flowing slightly crystalline powder. Starch xanthate exhibited good swelling in water. The study between ibuprofen and starch xanthate was shown the absence of interaction by fourier transform infrared spectra (FTIR) and differential scanning calorimetry (DSC). The drug content (100±5%), hardness (3.6–4 kg/sq. cm), and friability (0.12-0.15%) has been effective with regard to all the formulated fast dissolving tablets employing starch xanthate. The disintegration time of all the formulated tablets was found to be in the range of 12±0.01 to 312±0.02s. The optimized formulation F5 has the least disintegration time i.e., 12±0.01s. The In vitro wetting time of the formulated tablets was found to be in the range of 76±0.21 to 217±0.17s. The In vitro wetting time was less (i.e., 90s) in optimized formulation F5. The water absorption ratio of the formulated tablets was found to be in the range of 16±0.16 to 174±0.21%. The cumulative drug dissolved in the optimized formulation F5 was found to be 99.83±0.56% in 5 min.Conclusion: The dissolution efficiency of ibuprofen was enhanced when starch xanthate was found to be a superdisintegrant when combined with sodium starch glycolate, croscarmellose sodium and, hence it could be used in the formulation of fast dissolving tablets to provide immediate release of the contained drug within 5 min.


Author(s):  
Suresh Kulkarni ◽  
Ranjit P. ◽  
Nikunj Patel ◽  
Someshwara B. ◽  
Ramesh B. ◽  
...  

The present investigation deals with the formulation of fast disintegrating tablets of Meloxicam that disintegrate in the oral cavity upon contact with saliva and there by improve therapeutic efficacy. Meloxicam is a newer selective COX-1 inhibitor. The tablets were prepared by wet granulation procedure. The influence of superdisintegrants, crosspovidone, croscaremellose sodium on disintegration time, wetting time and water absorption ratio were studied. Tablets were evaluated for weight and thickness variation, disintegration time, drug content, in vitro dissolution, wetting time and water absorption ratio. The in vitro disintegration time of the best fast disintegrating tablets was found to be 18 sec. Tablets containing crospovidone exhibit quick disintegration time than tablets containing croscaremellose sodium. The fast disintegrating tablets of Meloxicam with shorter disintegration time, acceptable taste and sufficient hardness could be prepared using crospovidone and other excipients at optimum concentration.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Sign in / Sign up

Export Citation Format

Share Document