23 factorial design
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 44)

H-INDEX

6
(FIVE YEARS 2)

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Suzana Ioana Calcan ◽  
Oana Cristina Pârvulescu ◽  
Violeta Alexandra Ion ◽  
Cristian Eugen Răducanu ◽  
Liliana Bădulescu ◽  
...  

The paper aimed at studying the slow pyrolysis of vine pruning waste in a fixed bed reactor and characterizing the pyrolysis products. Pyrolysis experiments were conducted for 60 min, using CO2 as a carrier gas and oxidizing agent. The distribution of biochar and bio-oil was dependent on variations in heat flux (4244–5777 W/m2), CO2 superficial velocity (0.004–0.008 m/s), and mean size of vegetal material (0.007–0.011 m). Relationships among these factors and process performances in terms of yields of biochar (0.286–0.328) and bio-oil (0.260–0.350), expressed as ratio between the final mass of pyrolysis product and initial mass of vegetal material, and final value of fixed bed temperature (401.1–486.5 °C) were established using a 23 factorial design. Proximate and ultimate analyses, FT-IR and SEM analyses, measurements of bulk density (0.112 ± 0.001 g/cm3), electrical conductivity (0.55 ± 0.03 dS/m), pH (10.35 ± 0.06), and water holding capacity (58.99 ± 14.51%) were performed for biochar. Water content (33.2 ± 1.27%), density (1.027 ± 0.014 g/cm3), pH (3.34 ± 0.02), refractive index (1.3553 ± 0.0027), and iodine value (87.98 ± 4.38 g I2/100 g bio-oil) were measured for bio-oil. Moreover, chemical composition of bio-oil was evaluated using GC-MS analysis, with 27 organic compounds being identified.


2021 ◽  
Vol 13 (2) ◽  
pp. 29-35
Author(s):  
N. D. Nnamani ◽  
I. S. Okafor ◽  
O.N. Ume

Spherical crystallization and crystal agglomeration have been used to optimize compact crystals and functional properties of powders. The aim of this work is to evaluate the effect of spherical crystallization of acetylsalicylic acid crystals and crystal agglomeration of Manihotesculenta starch on direct compression tablet. Typical spherical crystallization using three solvent system of water–ethanol-carbon tetrachloride was used to produce spherical acetylsalicylic acid. Salting-out agglomeration of gelling in water and salting in ethanol was used to produce starch-xerogel from Manihotesculenta starch. The modified products were qualified using FT-IR analysis. The analysis results showed that modification did not alter chemical nature of the products. Acetylsalicylic acid tablets were formulated using spherical-crystallizedacetylsalicylic acid with 5 and 10% w/w starch-xerogel respectively, and using acetylsalicylic acid with 5 and 10% w/w of starch, and microcrystalline cellulose respectively. The physicochemical properties of the tablets were evaluated. Astatistical 23 factorial design of the tablet properties at 5% level of significance showed that the effects of the variables are different. Theacetylsalicylic acid tablets formulated from direct compression of spherical-crystallizedacetylsalicylic acid with 5 % w/w starch-xerogel produced quality tablets comparable to standard tablets from direct compression of acetylsalicylic acid with10 % w/w microcrystalline cellulose. Spherical crystallization and crystal agglomeration optimized the compact crystals of starch and acetylsalicylic acid, and improved direct compression properties of the crystals, and drug release from tablet.


2021 ◽  
Vol 19 (5) ◽  
pp. 521-539
Author(s):  
Diego Montenegro Quesada ◽  
Natalia Montero Rambla ◽  
Rodolfo Antonio Hernández Chaverri ◽  
Johanna Méndez Arias

The objective of this work was to produce activated carbon from the agricultural waste known as pineapple stubble, and to test its effectiveness in the removal of methylene blue and surfactants. Activated carbon was prepared using ZnCl2 and H3PO4 as activating agents and impregnation ratios of 2: 1 and 4:1 between the agent (mL) and the precursor (g) were evaluated. It was also investigated the need or not of a drying stage prior to carbonization. The produced activated carbon was characterized through FT-IR spectroscopy, X-ray fluorescence, N2 physisorption analysis, elemental analysis and electron microscopy. Methylene blue adsorption tests were performed to determine the adsorption effectiveness of the different activated carbons produced. For such evaluation, a 23 factorial design was used, and statistical analysis determined that the activated carbon with the highest adsorption of methylene is produced under the following conditions: ZnCl2 as activating agent, an impregnation ratio of 4:1 and with no drying step prior to carbonization. This produced activated carbon is also effective in the adsorption of the surfactant sodium dodecyl sulfate and for the surfactants present in the gray water obtained after washing clothes with commercial detergent. In these cases, removal efficiencies above 98 % were achieved. With respect to the characteristics of this activated carbon, it was observed a surface area of ​​685.5 m2/g, a total pore volume of 0.53 cm3/g, and an average pore diameter of 3.1 nm. Results achieved in the present study demonstrate that is possible to produce effective activated carbon for the removal of methylene blue and surfactants from an agricultural waste such as pineapple stubble.


Author(s):  
A. HARI OM PRAKASH RAO ◽  
R. SANTOSH KUMAR ◽  
SHAMBHAVI KANDUKURI ◽  
M. RAMYA

Objective: To synthesize, characterize and evaluate starch glycolate as a superdisintegrant in the formulation of Glipizide fast dissolving tablets by employing 23 factorial designs. Methods: Starch glycolate was prepared and its physical and micromeritic properties were performed to evaluate it. The fast dissolving tablet of Glipizide was prepared by employing starch crotonate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design for the evaluation of tablet parameters like disintegration and dissolution efficiency in 5 min. Results: The starch glycolate prepared was found to be fine, free-flowing and amorphous. Starch glycolate exhibited good swelling in water with a swelling index (10%). The study of starch glycolate was shown by fourier transform infrared spectra (FTIR). The drug content (100±5%), hardness (3.5–4 kg/sq. cm), and friability (<0.15%) was been effective with regard to all the formulated fast dissolving tablets employing starch glycolate. The disintegration time of all the formulated tablets was found to be in the range of 13±0.015 to 180±0.014 sec. The optimized formulation F8 had the least disintegration time i.e., 13±0.015 sec. The wetting time of the tablets was found to be in the range of 8±0.015 to 95±0.013 sec. The In vitro wetting time was less (i.e., 8±0.015s) in optimized formulation F8. The water absorption ratio of the formulated tablets was found to be in the range of 75±0.012 to 150±0.014%. The percent drug dissolved in the optimized formulation F8 was found to be 99.95% in 5 min. Conclusion: Starch glycolate was an efficient superdisintegrant for fast-dissolving tablets. The disintegration and dissolution efficiency of the fast dissolving tablets of glipizide was good and depended on the concentration of superdisintegrant employed i.e., starch glycolate, sodium starch glycolate, crospovidone. The formulated fast dissolving tablets of glipizide exhibited good dissolution efficiency in 5 min which can be used for the fast therapeutic action of glipizide.


Author(s):  
Sejal Patel ◽  
Anita P. Patel

In the interest of administration of dosage form oral route is most desirable and preferred method. After oral administration to get maximum therapeutic effect, major challenge is their water solubility. Water insoluble drug indicate insufficient bioavailability as well dissolution resulting in fluctuating plasma level. Benidipine (BND) is poorly water soluble antihypertensive drug has lower bioavailability. To improve bioavailability of Benidipine HCL, BND nanosuspension was formulated using media milling technique. HPMC E5 was used to stabilize nanosuspension. The effect of different important process parameters e.g. selection of polymer concentration X1(1.25 mg), stirring time X2 (800 rpm), selection of zirconium beads size X3 (0.4mm) were investigated by 23 factorial design to accomplish desired particle size and saturation solubility. The optimized batch had 408 nm particle size Y1, and showed in-vitro dissolution Y2 95±0.26 % in 30 mins and Zeta potential was -19.6. Differential scanning calorimetry (DSC) and FT-IR analysis was done to confirm there was no interaction between drug and polymer.


Author(s):  
S. Venkateswara Rao ◽  
S. Sathesh Kumar

The present work was aimed to prepare and evaluate Flutamide loaded methoxy poly (ethylene glycol) poly caprolactone (mPEG–PCL) nanoparticles for targeted delivery to the prostate cancer. The nanoparticles (NPs) were prepared by 23 factorial design and nanoprecipitation method. Various trials were evaluated for surface morphology, particle size and zeta potential. The influences of three formulation excipients such as polymer, stabilizer and organic phase volume on the characterization of NPs were investigated. The results of fourier transform infrared (FTIR) studies were indicated no interaction between the drug and polymer. The particle size varied from 79.2 to 89.1 nm and zeta potential value was found to be - 41.5 mv. The surface morphology of NPs was observed using scanning electron microscopy (SEM) and understands the arrangement and orientation of NPs to determine its behavior and stability. Flutamide loaded mPEG–PCL nanoparticle is a potential new carrier system for treatment of prostate cancer, which may overcome the problems associated with conventional formulations such as tablets.


2021 ◽  
Vol 12 (3) ◽  
pp. 1967-1976
Author(s):  
Kumar Babu P ◽  
Venkatachalam A ◽  
Bhaskar Reddy K

The purpose of this study is to make Nebivolol more efficient by converting it into a liquid solid composite compressed tablet. Blending cum sonication process was used to create the liquid solid composite. By altering the independent variables such as vehicle, carrier, and superdisintegrants, nearly 12 compositions were created in a 23 factorial design with four centre points. The influence on response, such as disintegration time in seconds and wetting time in seconds, was then determined. In addition, the liquid solid composite was compacted into a tablet and its percent invitro drug release was assessed. Based on disintegration time and wetting time, the optimal solid liquid compacts sustained release tablet formulation was identified to be LSC6 , which may be ideal candidates for boosting the solubility and dissolution rate of less soluble medications like Nebivolol.


Author(s):  
R. SANTOSH KUMAR ◽  
SHAMBHAVI KANDUKURI ◽  
M. RAMYA ◽  
B. KUSUMA LATHA

Objective: To synthesize, characterize and evaluate starch valerate as a superdisintegrant in the formulation of aceclofenac fast dissolving tablets by employing 23 factorial design. Methods: Starch valerate was synthesized and its physical and micromeritic properties were performed to evaluate it. The fast dissolving tablet of aceclofenac was prepared by employing starch valerate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design for evaluation of tablet parameters like disintegration and dissolution efficiency in 5 min. Results: The starch valerate prepared was found to be fine, amorphous and free flowing. Starch valerate exhibited good swelling in water with swelling index (125.2%). The study of starch valerate was shown by fourier transform infrared spectra (FTIR). The drug content (200±5%), hardness (3.5–4 kg/sq. cm), and friability (<0.15%) has been effective with regard to all the formulated fast dissolving tablets employing starch valerate. The disintegration time of all the formulated tablets was found to be in the range of 14±0.04 to 25.7±0.02 sec. The optimized formulation F4 had the least disintegration time i.e., 12.8±0.02 sec. The wetting time of the tablets was found to be in the range of 76±0.21 to 217±0.17s. The In vitro wetting time was less (i.e., 28±0.02s) in optimized formulation F4. The water absorption ratio of the formulated tablets was found to be in the range of 46±0.12 to 100±0.27%. The percent drug dissolved in the optimized formulation F8 was found to be 99.93% in 5 min. Conclusion: Starch valerate, when combined with sodium starch glycolate, croscarmellose sodium, with aceclofenac, was found to be an effective super disintegrant which improved the dissolution efficiency and could therefore be used in the formulation of quick dissolving tablets to provide immediate release of the contained drug within 5 min.


Author(s):  
A. HARI OM PRAKASH RAO ◽  
SANTOSH KUMAR RADA ◽  
SHAMBHAVI KANDUKURI

Objective: To synthesize, characterize and evaluate starch crotonate as a superdisintegrant in the formulation of Piroxicam fast dissolving tablets by employing 23 factorial design. Methods: Starch crotonate was synthesized and its physical and micromeritic properties were performed to evaluate it. The fast dissolving tablet of Piroxicam were prepared by employing starch crotonate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design. Results: The starch chrotonate prepared was found to be fine, free flowing and amorphous. Starch crotonate exhibited good swelling in water with swelling index (50%). The study of starch crotonate was shown by fourier transform infrared spectra (FTIR). The drug content (100±5%), hardness (3.6–4 kg/sq. cm), and friability (<0.15%) have been effective with regard to all the formulated fast dissolving tablets employing starch crotonate. The disintegration time of all the formulated tablets was found to be in the range of 18±03 to 66±03 sec. The optimized formulation F8 had the least disintegration time i.e., 18±03 sec. The wetting time of the tablets was found to be in the range of 49.92±0.11 to 140±0.18s. The In vitro wetting time was less (i.e., 74±0.37s) in optimized formulation F8. The water absorption ratio of the formulated tablets was found to be in the range of 27.58±0.01 to 123.07±0.33%. The percent drug dissolved in the optimized formulation F8 was found to be 99.83% in 10 min. Conclusion: Starch crotonate, when combined with sodium starch glycolate, croscarmellose sodium, with Piroxicam was found to be an effective super disintegrant which improved the dissolution efficiency and could therefore be used in the formulation of quick dissolving tablets to provide immediate release of the contained drug within 10 min.


Author(s):  
Mohamed Rahamathulla ◽  
Umme Hani ◽  
Ali Alqahtani ◽  
H. V. Gangadharappa ◽  
M. Yasmin Begum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document