scholarly journals EFFECT OF PHYSIOCHEMICAL FACTORS ON FRUITING BODY FORMATION IN MUSHROOM

Author(s):  
Foziya Khan ◽  
Ramesh Chandra

Objective: Fungi are heterotrophs and are involved in decomposition, nutrient cycling and nutrient transport, and are indispensable for achieving sustainable development. Mushrooms are the fungi with a distinctive fruiting body. Mushrooms are produced all over the world. In India, Punjab is the leading mushroom growing state. Mushrooms are rich sources of proteins, vitamins and minerals. Different types of immunoceuticals like lentinan, schizophyllan, active hexose correlated compound (AHCC) etc. have also been prepared from various mushrooms. The present review work highlights important observations in the area of mushroom. Methods: This review also shows that how several factors affect the fruiting body formation of mushrooms, which includes physiological (composition of culture media) and environmental factors (light, temperature, salinity, etc.). There are different factors like light, temperature etc. which affects the fruiting body development.Results: It has been found that, light has positive effects on hyphal aggregation and fruiting body maturation. It has been found that in oyster mushroom, light is essential for both normal expansion of pileus and in spore formation. It has been found that length of Stipe and the diameter of cap decreases with an increase in the concentration of CO2. Also, there is a range of temperature within which sporophore development occurs. The composition of media affects the growth of mushrooms too. It’s important to maintain a balance between carbon and nitrogen sources for induction of the fruiting body.Conclusion: There are different environmental factors affecting the fruiting body development of mushrooms. Hence, by adjusting various factors like temperature, light, media composition production of mushrooms can be increased.

2007 ◽  
Vol 189 (15) ◽  
pp. 5675-5682 ◽  
Author(s):  
James E. Berleman ◽  
John R. Kirby

ABSTRACT Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.


2007 ◽  
Vol 189 (21) ◽  
pp. 7937-7941 ◽  
Author(s):  
Cui-ying Zhang ◽  
Ke Cai ◽  
Hong Liu ◽  
Yong Zhang ◽  
Hong-wei Pan ◽  
...  

ABSTRACT The mts locus in salt-tolerant Myxococcus fulvus HW-1 was found to be critical for gliding motility, fruiting-body formation, and sporulation. The homologous genes in Myxococcus xanthus are also important for social motility and fruiting-body development. The mts genes were determined to be involved in cell-cell cohesion in both myxobacterial species.


2005 ◽  
Vol 4 (9) ◽  
pp. 1599-1602 ◽  
Author(s):  
Silvia Gabella ◽  
Simona Abbà ◽  
Sebastien Duplessis ◽  
Barbara Montanini ◽  
Francis Martin ◽  
...  

ABSTRACT cDNA arrays were used to explore mechanisms controlling fruiting body development in the truffle Tuber borchii. Differences in gene expression were higher between reproductive and vegetative stage than between two stages of fruiting body maturation. We suggest hypotheses about the importance of various physiological processes during the development of fruiting bodies.


2006 ◽  
Vol 189 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Marielena Chavira ◽  
Nga Cao ◽  
Karen Le ◽  
Tanveer Riar ◽  
Navid Moradshahi ◽  
...  

ABSTRACT Myxococcus xanthus, a gram-negative soil bacterium, responds to amino acid starvation by entering a process of multicellular development which culminates in the assembly of spore-filled fruiting bodies. Previous studies utilizing developmental inhibitors (such as methionine, lysine, or threonine) have revealed important clues about the mechanisms involved in fruiting body formation. We used Biolog phenotype microarrays to screen 384 chemicals for complete inhibition of fruiting body development in M. xanthus. Here, we report the identification of a novel inhibitor of fruiting body formation and sporulation, β-d-allose. β-d-Allose, a rare sugar, is a member of the aldohexose family and a C3 epimer of glucose. Our studies show that β-d-allose does not affect cell growth, viability, agglutination, or motility. However, β-galactosidase reporters demonstrate that genes activated between 4 and 14 h of development show significantly lower expression levels in the presence of β-d-allose. Furthermore, inhibition of fruiting body formation occurs only when β-d-allose is added to submerged cultures before 12 h of development. In competition studies, high concentrations of galactose and xylose antagonize the nonfruiting response to β-d-allose, while glucose is capable of partial antagonism. Finally, a magellan-4 transposon mutagenesis screen identified glcK, a putative glucokinase gene, required for β-d-allose-mediated inhibition of fruiting body formation. Subsequent glucokinase activity assays of the glcK mutant further supported the role of this protein in glucose phosphorylation.


2018 ◽  
Author(s):  
Kathy PoLam Chan ◽  
Jinhui Chang ◽  
Yichun Xie ◽  
Man Kit Cheung ◽  
Ka Lee Ma ◽  
...  

The functions of glycogen synthase kinase 3 (GSK3) have been well-studied in animal, plant and yeast. However, information on its roles in basidiomycetous fungi is still limited. In this study, we used the model mushroom Coprinopsis cinerea to study the characteristics of GSK3 in fruiting body development. Application of a GSK3 inhibitor Lithium chloride (LiCl) induced enhanced mycelial growth and inhibited fruiting body formation in C. cinerea. RNA-Seq of LiCl-treated C. cinerea resulted in a total of 14128 unigenes. There were 1210 differentially expressed genes (DEGs) between the LiCl-treated samples and control samples in the mycelium stage (first time point), whereas 1402 DEGs were detected at the stage when the control samples formed hyphal knots and the treatment samples were still in mycelium (second time point). Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis of the DEGs revealed significant associations between the enhanced mycelium growth in LiCl treated C. cinerea and metabolism pathways such as “biosynthesis of secondary metabolite” and “biosynthesis of antibiotics”. In addition, DEGs involved in cellular process pathways, including “cell cycle-yeast” and “meiosis-yeast”, were identified in C. cinerea fruiting body formation suppressed by LiCl under favorable environmental conditions. Our findings suggest that GSK3 activity is essential for fruiting body formation as it affects the expression of fruiting body induction genes and genes in cellular processes. Further functional studies of GSK3 in basidiomycetous fungi may help understand the relationships between environmental signals and fruiting body development.


2006 ◽  
Vol 61 (5) ◽  
pp. 1283-1293 ◽  
Author(s):  
Pamela J. Bonner ◽  
Wesley P. Black ◽  
Zhaomin Yang ◽  
Lawrence J. Shimkets

1995 ◽  
Vol 33 (3) ◽  
pp. 169-174 ◽  
Author(s):  
Kazunari INABA ◽  
Yoshinori TAKANO ◽  
Yoshikazu MAYUZUMI ◽  
Toshirou MITSUNAGA

Sign in / Sign up

Export Citation Format

Share Document