scholarly journals New Locus Important for Myxococcus Social Motility and Development

2007 ◽  
Vol 189 (21) ◽  
pp. 7937-7941 ◽  
Author(s):  
Cui-ying Zhang ◽  
Ke Cai ◽  
Hong Liu ◽  
Yong Zhang ◽  
Hong-wei Pan ◽  
...  

ABSTRACT The mts locus in salt-tolerant Myxococcus fulvus HW-1 was found to be critical for gliding motility, fruiting-body formation, and sporulation. The homologous genes in Myxococcus xanthus are also important for social motility and fruiting-body development. The mts genes were determined to be involved in cell-cell cohesion in both myxobacterial species.

2007 ◽  
Vol 189 (15) ◽  
pp. 5675-5682 ◽  
Author(s):  
James E. Berleman ◽  
John R. Kirby

ABSTRACT Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.


2005 ◽  
Vol 4 (9) ◽  
pp. 1599-1602 ◽  
Author(s):  
Silvia Gabella ◽  
Simona Abbà ◽  
Sebastien Duplessis ◽  
Barbara Montanini ◽  
Francis Martin ◽  
...  

ABSTRACT cDNA arrays were used to explore mechanisms controlling fruiting body development in the truffle Tuber borchii. Differences in gene expression were higher between reproductive and vegetative stage than between two stages of fruiting body maturation. We suggest hypotheses about the importance of various physiological processes during the development of fruiting bodies.


2005 ◽  
Vol 187 (24) ◽  
pp. 8537-8541 ◽  
Author(s):  
Toshiyuki Ueki ◽  
Chun-Ying Xu ◽  
Sumiko Inouye

ABSTRACT A new sigma factor, SigF, was identified from the social and developmental bacterium Myxococcus xanthus. SigF is required for fruiting body formation during development as well as social motility during vegetative growth. Analysis of gene expression indicates that it is possible that the sigF gene is involved in regulation of an unidentified gene for social motility.


2006 ◽  
Vol 189 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Marielena Chavira ◽  
Nga Cao ◽  
Karen Le ◽  
Tanveer Riar ◽  
Navid Moradshahi ◽  
...  

ABSTRACT Myxococcus xanthus, a gram-negative soil bacterium, responds to amino acid starvation by entering a process of multicellular development which culminates in the assembly of spore-filled fruiting bodies. Previous studies utilizing developmental inhibitors (such as methionine, lysine, or threonine) have revealed important clues about the mechanisms involved in fruiting body formation. We used Biolog phenotype microarrays to screen 384 chemicals for complete inhibition of fruiting body development in M. xanthus. Here, we report the identification of a novel inhibitor of fruiting body formation and sporulation, β-d-allose. β-d-Allose, a rare sugar, is a member of the aldohexose family and a C3 epimer of glucose. Our studies show that β-d-allose does not affect cell growth, viability, agglutination, or motility. However, β-galactosidase reporters demonstrate that genes activated between 4 and 14 h of development show significantly lower expression levels in the presence of β-d-allose. Furthermore, inhibition of fruiting body formation occurs only when β-d-allose is added to submerged cultures before 12 h of development. In competition studies, high concentrations of galactose and xylose antagonize the nonfruiting response to β-d-allose, while glucose is capable of partial antagonism. Finally, a magellan-4 transposon mutagenesis screen identified glcK, a putative glucokinase gene, required for β-d-allose-mediated inhibition of fruiting body formation. Subsequent glucokinase activity assays of the glcK mutant further supported the role of this protein in glucose phosphorylation.


2007 ◽  
Vol 189 (23) ◽  
pp. 8474-8483 ◽  
Author(s):  
Faisury Ossa ◽  
Michelle E. Diodati ◽  
Nora B. Caberoy ◽  
Krista M. Giglio ◽  
Mick Edmonds ◽  
...  

ABSTRACT Changes in gene expression are important for the landmark morphological events that occur during Myxococcus xanthus fruiting body development. Enhancer binding proteins (EBPs), which are transcriptional activators, play prominent roles in the coordinated expression of developmental genes. A mutation in the EBP gene nla4 affects the timing of fruiting body formation, the morphology of mature fruiting bodies, and the efficiency of sporulation. In this study, we showed that the nla4 mutant accumulates relatively low levels of the stringent nucleotide ppGpp. We also found that the nla4 mutant is defective for early developmental events and for vegetative growth, phenotypes that are consistent with a deficiency in ppGpp accumulation. Further studies revealed that nla4 cells produce relatively low levels of GTP, a precursor of RelA-dependent synthesis of (p)ppGpp. In addition, the normal expression patterns of all stringent response-associated genes tested, including the M. xanthus ppGpp synthetase gene relA, are altered in nla4 mutant cells. These findings indicate that Nla4 is part of regulatory pathway that is important for mounting a stringent response and for initiating fruiting body development.


2018 ◽  
Author(s):  
Kathy PoLam Chan ◽  
Jinhui Chang ◽  
Yichun Xie ◽  
Man Kit Cheung ◽  
Ka Lee Ma ◽  
...  

The functions of glycogen synthase kinase 3 (GSK3) have been well-studied in animal, plant and yeast. However, information on its roles in basidiomycetous fungi is still limited. In this study, we used the model mushroom Coprinopsis cinerea to study the characteristics of GSK3 in fruiting body development. Application of a GSK3 inhibitor Lithium chloride (LiCl) induced enhanced mycelial growth and inhibited fruiting body formation in C. cinerea. RNA-Seq of LiCl-treated C. cinerea resulted in a total of 14128 unigenes. There were 1210 differentially expressed genes (DEGs) between the LiCl-treated samples and control samples in the mycelium stage (first time point), whereas 1402 DEGs were detected at the stage when the control samples formed hyphal knots and the treatment samples were still in mycelium (second time point). Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis of the DEGs revealed significant associations between the enhanced mycelium growth in LiCl treated C. cinerea and metabolism pathways such as “biosynthesis of secondary metabolite” and “biosynthesis of antibiotics”. In addition, DEGs involved in cellular process pathways, including “cell cycle-yeast” and “meiosis-yeast”, were identified in C. cinerea fruiting body formation suppressed by LiCl under favorable environmental conditions. Our findings suggest that GSK3 activity is essential for fruiting body formation as it affects the expression of fruiting body induction genes and genes in cellular processes. Further functional studies of GSK3 in basidiomycetous fungi may help understand the relationships between environmental signals and fruiting body development.


2002 ◽  
Vol 184 (5) ◽  
pp. 1462-1465 ◽  
Author(s):  
Hope Lancero ◽  
Jennifer E. Brofft ◽  
John Downard ◽  
Bruce W. Birren ◽  
Chad Nusbaum ◽  
...  

ABSTRACT Myxococcus xanthus dsp and dif mutants have similar phenotypes in that they are deficient in social motility and fruiting body development. We compared the two loci by genetic mapping, complementation with a cosmid clone, DNA sequencing, and gene disruption and found that 16 of the 18 dsp alleles map to the dif genes. Another dsp allele contains a mutation in the sglK gene. About 36.6 kb around the dsp-dif locus was sequenced and annotated, and 50% of the genes are novel.


2002 ◽  
Vol 184 (20) ◽  
pp. 5654-5660 ◽  
Author(s):  
Kristen Bellenger ◽  
Xiaoyuan Ma ◽  
Wenyuan Shi ◽  
Zhaomin Yang

ABSTRACT In bacteria with multiple sets of chemotaxis genes, the deletion of homologous genes or even different genes in the same operon can result in disparate phenotypes. Myxococcus xanthus is a bacterium with multiple sets of chemotaxis genes and/or homologues. It was shown previously that difA and difE, encoding homologues of the methyl-accepting chemoreceptor protein (MCP) and the CheA kinase, respectively, are required for M. xanthus social gliding (S) motility and development. Both difA and difE mutants were also defective in the biogenesis of the cell surface appendages known as extracellular matrix fibrils. In this study, we investigated the roles of the CheW homologue encoded by difC, a gene at the same locus as difA and difE. We showed that difC mutations resulted in defects in M. xanthus developmental aggregation, sporulation, and S motility. We demonstrated that difC is indispensable for wild-type cellular cohesion and fibril biogenesis but not for pilus production. We further illustrated the ectopic complementation of a difC in-frame deletion by a wild-type difC. The identical phenotypes of difA, difC, and difE mutants are consistent and supportive of the hypothesis that the Dif chemotaxis homologues constitute a chemotaxis-like signal transduction pathway that regulates M. xanthus fibril biogenesis and S motility.


1998 ◽  
Vol 180 (21) ◽  
pp. 5765-5768 ◽  
Author(s):  
Yongzhi Geng ◽  
Zhaomin Yang ◽  
John Downard ◽  
David Zusman ◽  
Wenyuan Shi

ABSTRACT Myxococcus xanthus is a gram-negative soil bacterium which undergoes fruiting body formation during starvation. Thefrz signal transduction system has been found to play an important role in this process. FrzCD, a methyl-accepting taxis protein homologue, shows modulated methylation during cellular aggregation, which is thought to be part of an adaptation response to an aggregation signal. In this study, we assayed FrzCD methylation in many known and newly isolated mutants defective in fruiting body formation to determine a possible relationship between the methylation response and fruiting morphology. The results of our analysis indicated that the developmental mutants could be divided into two groups based on their ability to show normal FrzCD methylation during development. Many mutants blocked early in development, i.e., nonaggregating or abnormally aggregating mutants, showed poor FrzCD methylation. The well-characterized asg, bsg, csg, and esg mutants were found to be of this type. The defects in FrzCD methylation of these signaling mutants could be partially rescued by extracellular complementation with wild-type cells or addition of chemicals which restore their fruiting body formation. Mutants blocked in late development, i.e., translucent mounds, showed normal FrzCD methylation. Surprisingly, some mutants blocked in early development also exhibited a normal level of FrzCD methylation. The characterized mutants in this group were found to be defective in social motility. This indicates that FrzCD methylation defines a discrete step in the development of M. xanthus and that social motility mutants are not blocked in these early developmental steps.


2006 ◽  
Vol 61 (5) ◽  
pp. 1283-1293 ◽  
Author(s):  
Pamela J. Bonner ◽  
Wesley P. Black ◽  
Zhaomin Yang ◽  
Lawrence J. Shimkets

Sign in / Sign up

Export Citation Format

Share Document