Liver X receptors: new drug targets to treat Type 2 diabetes?

2006 ◽  
Vol 1 (2) ◽  
pp. 181-189 ◽  
Author(s):  
Knut R Steffensen ◽  
Jan-Åke Gustafsson
2010 ◽  
Vol 999 (999) ◽  
pp. 1-7
Author(s):  
Suresh Thareja ◽  
Saurabh Aggarwal ◽  
Priyanka Malla ◽  
Diksha Haksar ◽  
Tilak Raj Bhardwaj ◽  
...  
Keyword(s):  

2018 ◽  
Vol 8 (1) ◽  
pp. 22-33 ◽  
Author(s):  
Da-Yong Lu ◽  
Jin-Yu Che ◽  
Nagendra Sastry Yarla ◽  
Hong-Ying Wu ◽  
Ting-Ren Lu ◽  
...  

The causality and etio-pathologic risks for patients with Type 2 Diabetes (T2DM) are important areas in modern medicine. Disease complications are largely unpredictable in patients with T2DM. In the future, we welcome therapeutics of both cutting-edge and traditional for anti-diabetic treatments and management with higher efficiency and less cost. Expanding medical knowledge, behavior/life-style notification in healthcare, modern genetic/bioinformatics diagnostic promotion, clinical developments (Traditional Chinese Medicine and personalized medicine) and new drug developments - including candidate drug targets should be implemented in the future. These efforts might be useful avenues for updating anti-diabetic therapeutics globally. This article aims at introducing this information for T2DM treatment boosts.


2018 ◽  
Author(s):  
Md Habibur Rahman ◽  
Silong Peng ◽  
Chen Chen ◽  
Pietro Lio’ ◽  
Mohammad Ali Moni

Neurological diseases (NDs) are progressive disorder often advances with age and comorbidities of Type 2 diabetes (T2D). Epidemiological, clinical and neuropathological evidence advocate that patients with T2D are at an increased risk of getting NDs. However, it is very little known how T2D affects the risk and severity of NDs. To tackle these problems, we employed a transcriptional analysis of affected tissues using agnostic approaches to identify overlapping cellular functions. In this study, we examined gene expression microarray human datasets along with control and disease-affected individuals. Differentially expressed genes (DEG) were identified for both T2D and NDs that includes Alzheimer Disease (AD), Parkinson Disease (PD), Amyotrophic Lateral Sclerosis (ALS), Epilepsy Disease (ED), Huntington Disease (HD), Cerebral Palsy (CP) and Multiple Sclerosis Disease (MSD). We have developed genetic association and diseasome network of T2D and NDs based on the neighborhood-based benchmarking and multilayer network topology approaches. Overlapping DEG sets go through protein-protein interaction and gene enrichment using pathway analysis and gene ontology methods, identifying numerous candidate common genes and pathways. Gene expression analysis platforms have been extensively used to investigate altered pathways and to identify potential biomarkers and drug targets. Finally, we validated our identified biomarkers using the gold benchmark datasets which identified corresponding relations of T2D and NDs. Therapeutic targets aimed at attenuating identified altered pathway could ameliorate neurological dysfunction in a T2D patient.


2014 ◽  
Vol 114 (5) ◽  
pp. 24
Author(s):  
Diane S. Aschenbrenner
Keyword(s):  

Author(s):  
Md Habibur Rahman ◽  
Silong Peng ◽  
Chen Chen ◽  
Pietro Lio’ ◽  
Mohammad Ali Moni

Neurological diseases (NDs) are progressive disorder often advances with age and comorbidities of Type 2 diabetes (T2D). Epidemiological, clinical and neuropathological evidence advocate that patients with T2D are at an increased risk of getting NDs. However, it is very little known how T2D affects the risk and severity of NDs. To tackle these problems, we employed a transcriptional analysis of affected tissues using agnostic approaches to identify overlapping cellular functions. In this study, we examined gene expression microarray human datasets along with control and disease-affected individuals. Differentially expressed genes (DEG) were identified for both T2D and NDs that includes Alzheimer Disease (AD), Parkinson Disease (PD), Amyotrophic Lateral Sclerosis (ALS), Epilepsy Disease (ED), Huntington Disease (HD), Cerebral Palsy (CP) and Multiple Sclerosis Disease (MSD). We have developed genetic association and diseasome network of T2D and NDs based on the neighborhood-based benchmarking and multilayer network topology approaches. Overlapping DEG sets go through protein-protein interaction and gene enrichment using pathway analysis and gene ontology methods, identifying numerous candidate common genes and pathways. Gene expression analysis platforms have been extensively used to investigate altered pathways and to identify potential biomarkers and drug targets. Finally, we validated our identified biomarkers using the gold benchmark datasets which identified corresponding relations of T2D and NDs. Therapeutic targets aimed at attenuating identified altered pathway could ameliorate neurological dysfunction in a T2D patient.


2020 ◽  
Author(s):  
Mingjun Yang ◽  
Boni Song ◽  
Zhitong Bing ◽  
Juxiang Liu ◽  
Rui Li ◽  
...  

Abstract Background: Type 2 Diabetes Mellitus(T2DM) is an endocrine disease that caused mainly by insulin resistance (IR) and β cell dysfunction. The incidence of T2DM is quite high in the worldwide. To explore the molecular mechanism of Jinqi Jiangtang Tablet(JJT) in treating of T2DM based on Network Pharmacology. Methods: The active compounds, targets of three Traditional Chinese medicines in JJT were obtained by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database and Uniprot database; The targets of T2DM were screened through the Drugbank database; The compound-target network was constructed via the Cytoscape 3.7.2 software and used the built-in Network analyzer to analyze and select the key active compounds; The overlapping targets of drug and disease targets were gained by the VENNY online tool and the targets were built by STRING website to select the key genes; Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed on the potential targets using DAVID6.8 online tool to study the mechanism of overlapping targets. Via Systems Dock platform to validate the interaction between compound and targets Results: Twenty-five active compounds of JJT were screened, 101 drug targets, 142 disease targets and twenty-one overlapping targets. GO enrichment analysis showed that the biological processes (BP)mainly included the blood circulation ,etc. Cell composition(CC) mainly affected the integral component of plasma membrane, etc. Molecular functions(MF) mainly involved alpha-adrenergic receptor activity, etc. KEGG pathway analysis showed that there were twelve pathways related to T2DM, among which PPAR signaling pathway was related to T2DM mostly. RXRA is one of key targets of JJT and berberine performed well. Conclusions: This study revealed the mechanism of JJT in treatment of T2DM preliminarily and supplied a further foundation for studying its mechanism.


Sign in / Sign up

Export Citation Format

Share Document