Whole blood viscosity predicts nondipping circadian pattern in essential hypertension

2020 ◽  
Vol 14 (14) ◽  
pp. 1307-1316
Author(s):  
Abdullah K Dolu ◽  
Ahmet Korkmaz ◽  
Harun Kundi ◽  
Umit Guray

Aim: We aimed to investigate the association between whole blood viscosity (WBV) and nondipping pattern in patients with essential hypertension. Materials & methods: A total of consecutive 530 patients who had been evaluated by ambulatory blood pressure monitoring were included. WBV was estimated by using hematocrit and plasma total protein levels for both WBV in low shear rate (0.5 s-1) and WBV in high shear rate (208 s-1) according to the de Simone’s formula. Results: In the multivariate analysis, low shear rate and high shear rate of WBV were associated independently with nondipping pattern in patients with essential hypertension. Conclusion: As a simple, inexpensive and noninvasive tool, WBV seems to be a significant predictor of nondipping hypertension.

2021 ◽  
Vol 15 (3) ◽  
pp. 181-190
Author(s):  
Elif H Ozcan Cetin ◽  
Mehmet S Cetin ◽  
Mustafa B Ozbay ◽  
Hasan C Könte ◽  
Nezaket M Yaman ◽  
...  

Aim: We aimed to assess the association of whole blood with thromboembolic milieu in significant mitral stenosis patients. Methodology & results: We included 122 patients and classified patients into two groups as having thrombogenic milieu, thrombogenic milieu (+), otherwise patients without thrombogenic milieu, thrombogenic milieu (-). Whole blood viscosity (WBV) in both shear rates were higher in thrombogenic milieu (+) group comparing with thrombogenic milieu (-). WBV at high shear rate and WBV at low shear rate parameters were moderately correlated with grade of spontaneous echo contrast. Adjusted with other parameters, WBV parameters at both shear rates were associated with presence of thrombogenic milieu. Discussion & conclusion: We found that extrapolated WBV at both shear rates was significantly associated with the thrombogenic milieu in mitral stenosis. This easily available parameter may provide additional perspective about thrombogenic diathesis.


2012 ◽  
Vol 35 (6) ◽  
pp. 425-434 ◽  
Author(s):  
Won Kim ◽  
Sung Kwang Park ◽  
Kyung Pyo Kang ◽  
Dong Hwan Lee ◽  
Sam Yeon Kim ◽  
...  

Background: Elevated blood viscosity has been shown to be independently correlated with cardiovascular risk factors and associated with increased risk of major cardiovascular events, including death and acute myocardial infarction. The aim of the present study was to investigate changes in whole blood viscosity (WBV) at shear rates of 1, 5, and 300 s-1 before and after hemodialysis in patients with end-stage renal disease (ESRD). We also examined the relationship between the changes of WBV and intravascular blood volume. Methods: 43 patients with ESRD receiving maintenance hemodialysis were enrolled. WBV was measured using a scanning capillary tube viscometer pre- and post-dialysis to quantify dialytic viscosity surges. Body weight, blood pressure, and hematocrit were also measured before and after hemodialysis, as was the fluid removed during the session. Results: Hemodialysis had a 3 times greater impact on the low-shear WBV at a shear rate of 1 s-1 (i.e., 44.1% change) than on the high-shear WBV at a shear rate of 300 s-1 (i.e., 15.9% change). Changes in the low-shear WBV obtained at shear rates of 1 and 5 s-1 during hemodialysis were significantly correlated with changes in hematocrit. The intravascular blood volume reduction during hemodialysis was positively correlated with the changes in both high-shear and low-shear WBVs. Conclusions: These results suggest that the WBV parameter may hold additional information beyond hemoconcentration. Further research is needed to evaluate the relationship between low-shear WBV surges and increased morbidity in the patient population with ESRD.


2003 ◽  
Vol 13 (6) ◽  
pp. 305-312 ◽  
Author(s):  
G.A.M. Pop ◽  
W.J. Hop ◽  
L. Moraru ◽  
M. van der Jagt ◽  
J. Quak ◽  
...  

AbstractRed blood cell aggregation (RBCa) is a sensitive inflammation marker. RBCa determination from erythrocyte sedimentation rate, ESR, is used since long, but is unspecific unless corrected for hematocrit, Ht. Whole blood viscosity measurement at low shear rate is also sensitive to RBCa but is cumbersome to apply. To investigate whether electrical blood impedance, being sensitive to spatial red cell distribution, can be a good alternative to determine RBCa in low shear conditions. Blood was collected from 7 healthy volunteers. From each 16 different samples were prepared with 4 different Ht’s and with 4 different fibrinogen concentrations. Viscosity was measured at low shear rate (4.04 s-1) with a rotational viscometer at 37˚C. Electrical blood impedance was measured during similar shear conditions and temperature in a specially designed cuvette. ESR was determined according to Westergren. A logarithmic increase of viscosity as well as of capacitance, Cm, is seen when fibrinogen rises and an exponential increase when Ht rises. However, ESR shows a logarithmic decrease with increasing Ht and an exponential increase when fibrinogen rises. The viscosity could be accurately described using an exponential model. Under similar low shear conditions and temperature in-vitro, either whole blood viscosity or electrical blood capacitance reflect red blood cell aggregation due to fibrinogen and Ht variation in a similar way.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2716-2716
Author(s):  
Vivien A. Sheehan ◽  
Sheryl Nelson ◽  
Caroline Yappan ◽  
Bogdan R. Dinu ◽  
Danielle Guffey ◽  
...  

Abstract Background: Sickle cell disease (SCD) patients have altered blood rheology due to erythrocyte abnormalities, including increased aggregation and reduced deformability, which together affect microcirculatory blood flow and tissue perfusion. At equal hematocrit, sickle cell blood viscosity is increased compared to normal individuals. The hematocrit to viscosity ratio (HVR) is a measure of red blood cell (RBC) oxygen carrying capacity, and is reduced in SCD with clinical consequences related to altered blood flow and reduced tissue oxygenation. Erythrocyte transfusions reduce HVR at low shear rates that mimic venous circulation, and do not change HVR at high shear rates that mimic arterial blood flow. Hydroxyurea is a safe and effective therapy for SCD; however, its effects on sickle cell rheology and HVR have not been fully investigated. Evaluating the effects of hydroxyurea on viscosity is especially critical, before its use is extended widely to patients with cerebrovascular disease or genotypes with higher hematocrit and higher viscosity such as Hemoglobin SC (HbSC). Methods: To determine the effects of hydroxyurea on viscosity and HVR, we designed a prospective study to measure whole blood viscosity at 45 s-1 (low shear) and 225 s-1(high shear) rates in pediatric patients with SCD using a Brookfield cone and plate viscometer under oxygenated conditions. Venous blood samples (1-3mL) were collected in EDTA and analyzed no more than 4 hours after phlebotomy; samples were run in duplicate by persons blinded to the patient’s sickle genotype and treatment status. Laboratory values were obtained using an ADVIA hematology analyzer. Samples were analyzed from three non-overlapping cohorts of patients with SCD and HbAA individuals for comparison: untreated HbSS patients (n= 43), HbSS patients treated with hydroxyurea at maximum tolerated dose (n=98), untreated HbSC patients (n=53) and HbAA patients (n=19). Laboratory parameters that differed significantly among the SCD groups were analyzed by simple linear regression. Results: Patient characteristics and viscosity measurements are shown in the Table. Within the SCD population, the viscosity was lowest among the untreated HbSS patients, presumably due to their low hematocrit, while viscosity was higher in HbSS patients on hydroxyurea and HbSC patients. When the HVR was calculated for each group, no significant difference was identified between untreated HbSS and untreated HbSC patients. However, hydroxyurea treatment significantly increased HVR at both 45s-1 and 225 s-1 (p<0.001), indicating that the slightly increased viscosity in this cohort was more than compensated by a higher hematocrit. Correlations were tested for hemoglobin (Hb), mean corpuscular volume (MCV), white blood cell count (WBC), absolute neutrophil count (ANC), absolute reticulocyte count (ARC), % fetal hemoglobin (HbF), and average red cell density in g/dL with HVR, at both shear rates. The hydroxyurea-associated HVR increase at both shear rates was independent of %HbF or MCV, but the increased HVR at 225 s-1was associated with lower WBC (p<0.001), lower ANC (p=0.002), and lower red cell density (p=.009). Conclusions: We provide prospective data on whole blood viscosity measurements in a large cohort of children with SCD. Hydroxyurea increases the hematocrit in HbSS patients more than the viscosity, and thus improves HVR. These findings imply that hydroxyurea improves RBC oxygen transport at both high and low shear rates, which should confer clinical benefits, and these effects are independent of HbF induction. Concerns about hydroxyurea increasing whole blood viscosity and reducing tissue oxygenation in children with cerebrovascular disease or HbSC patients may not be warranted, if the same beneficial HVR effects are achieved. Abstract 2717. Table 1. Patient characteristics. Viscosity was typically measured in duplicate and averaged for each patient. HVR at 45 s-1 and 225s-1 was calculated as hematocrit/viscosity. Results are presented as mean ± 2SD. HbAAn=19 HbSS, untreatedn=43 HbSS, on Hydroxyurean=98 HbSCn=53 Age (years) 15.4 ± 3.8 10.4 ± 5.1 10.7 ± 3.4 10.5 ± 4.3 Hemoglobin (gm/dL) 13.5 ± 1.7 8.5 ± 1.0 9.9 ± 1.4 11.0 ± 1.2 Hematocrit (%) 40.9 ± 5.3 25.5 ± 3.1 28.4 ± 3.7 31.3 ± 3.2 Viscosity (cP) at 45s-1 5.3 ± 0.9 4.6 ± 1.2 4.3 ± 0.9 5.5 ±0.9 HVR at 45s-1 7.5 ± 0.9 5.8 ± 1.1 6.75 ± 1.0 5.77 ± 0.7 Viscosity (cP) at 225s-1 3.8 ± 0.5 3.3 ± 0.5 3.4 ± 0.5 4.1 ± 0.5 HVR at 225s-1 10.3 ± 0.7 7.7 ± 0.8 8.53 ± 0.8 7.72 ± 0.6 Disclosures Off Label Use: Hydroxyurea is not FDA approved for use in pediatric sickle cell patients.


2005 ◽  
Vol 35 (2) ◽  
pp. 93-98 ◽  
Author(s):  
G. Ciuffetti ◽  
G. Schillaci ◽  
R. Lombardini ◽  
M. Pirro ◽  
G. Vaudo ◽  
...  

2018 ◽  
Vol 24 (8) ◽  
pp. 1276-1281 ◽  
Author(s):  
Gregorio Caimi ◽  
Eugenia Hopps ◽  
Maria Montana ◽  
Giuseppe Andolina ◽  
Caterina Urso ◽  
...  

Considering the role of hemorheology in coronary circulation, we studied blood viscosity in patients with juvenile myocardial infarction. We examined whole blood viscosity at high shear rate using the cone-on-plate viscosimeter Wells-Brookfield ½ LVT and at low shear rate employing a viscometer Contraves LS30 in 120 patients (aged <46 years) with myocardial infarction, at the initial stage and subsequently 3 and 12 months after. At the initial stage, patients had an increased whole blood viscosity in comparison to normal controls. This hemorheological profile was not influenced by the cardiovascular risk factors, nor by the extent of coronary lesions, even if some differences were evident between patients with ST-segment elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI). The blood viscosity pattern at the initial stage did not influence recurring ischemic events or the onset of heart failure during an 18 months’ follow-up. The neutrophil to lymphocyte ratio did not affect the blood viscosity pattern. We reevaluated 83 patients 3 months after and 70 patients 12 months after the acute coronary syndrome, and we found that the hemorheological parameters were still altered in comparison to normal controls at both times. We observed an impairment of the hemorheological pattern in young patients with myocardial infarction, partially influenced by the infarction type (STEMI and NSTEMI) and persisting in the long term.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1518-1518
Author(s):  
Tamas Alexy ◽  
Thomas D. Coates ◽  
John C Wood ◽  
Herbert J. Meiselman ◽  
Rosalinda B Wenby ◽  
...  

Abstract Abstract 1518 Poster Board I-541 Introduction Chronic blood transfusions are commonly used as therapy for sickle cell disease (SCD, HbSS) in order to improve oxygen delivery and minimize complications such as stroke in high-risk children. Vaso-occlusive crises can occur in regions of high shear flow (e.g., major cerebral artery occlusions) or regions of low shear flow (e.g., marrow infarct) leading to acute ischemia and, if severe, to necrosis of affected tissues. Transfusion with normal (AA) RBC causes an increase of hematocrit (H) that is complicated by two opposing factors: increased hematocrit (H) causes a linear increase of oxygen carrying capacity and also an exponential increase of blood viscosity (η). As a consequence, the calculated oxygen transport effectiveness, defined as the ratio of H to η (H/η), is a biphasic function of hematocrit: H/η initially increases with H, reaches a maximum at an optimal H value, and then declines with further increases of H. At equal H and shear rate, sickle (SS) blood has significantly higher viscosity than AA and hence part of the strategy for transfusing SCD patients is to reduce η so as to improve H/η. Viscosity studies at high shear rates indicate that an optimum H can be demonstrated for AA-SS RBC mixtures prepared by adding AA RBC to SS blood to simulate transfusion. In marked contrast, low shear rate results for AA-SS mixtures indicate that there is no optimum hematocrit and H/η always decreases with increasing H (Transfusion 46:912-918, 2006). In order to extend these previous in vitro observations to SCD patients, we have measured blood viscosity and hematocrit using whole blood samples acquired prior to and following routine therapeutic transfusion; H/η was calculated over a wide, physiologically relevant shear rate range. Methods All subjects (n= 8, mean age =18.7 years) had homozygous HbSS disease, were crisis-free for > 4 weeks, and were enrolled in a chronic transfusion protocol designed to yield < 30% HbS and a post-transfusion H of 30-35%. Blood samples were obtained pre- and within 120 hours post-transfusion. A computer-controller tube viscometer was used to determine blood viscosity (37 °C, 40 mm Hg oxygen tension) over a shear rate range of 1 – 1,000 1/s. Results 1) As anticipated, blood viscosity and the degree of non-Newtonian flow behavior increased with H (24.7% pre-transfusion, 34.6% post-transfusion); 2) the change of H/η from pre- to post- transfusion was markedly affected by shear rate (Figure). As indicated, there is a large adverse effect at low shear (i.e., H/η reduced by 20-25% following transfusion), a neutral effect at about 50-100 1/s, and an improved H/η at high shear (Figure). That is, transfusion with AA RBC to obtain a lower percent SS RBC and a higher H actually impairs oxygen transport effectiveness at low shear and is only beneficial at high shear. Conclusions Clinical experience suggests that transfusion regimens aimed a keeping HbS at 30-50% are effective in preventing recurrent strokes in high-risk children. However, our new in vivo transfusion data suggest that at low shear rates, %HbS must be reduced further for H/η to surpass pre-transfusion levels. We interpret these findings as being consistent with our previous data for AA-SS RBC mixtures. They are also consistent with clinical results indicating lack of efficacy for transfusion in low flow areas (e.g., bone marrow during acute crisis) but highly beneficial effects in high flow regions (e.g., cerebral arteries). Our results thus suggest that benefits of transfusion may vary depending on local flow rates (i.e., shear rates) and organ-specific hemodynamics. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jung-Woo Shim ◽  
Hyun Kyung Moon ◽  
Yong Hyun Park ◽  
Misun Park ◽  
Jaesik Park ◽  
...  

Abstract Background The aim of this study was to investigate the effect of the steep Trendelenburg position (STP) with pneumoperitoneum on whole-blood viscosity (WBV) in patients undergoing robot-assisted laparoscopic prostatectomy (RALP). The study also analyzed the associations of clinical patient-specific and time-dependent variables with WBV and recorded postoperative outcomes. Methods Fifty-eight adult male patients (ASA physical status of I or II) undergoing elective RALP were prospectively analyzed in this study. WBV was intraoperatively measured three times: at the beginning of surgery in the supine position without pneumoperitoneum; after 30 min in the STP with pneumoperitoneum; and at the end of surgery in the supine position without pneumoperitoneum. The WBV at a high shear rate (300 s− 1) was recorded as systolic blood viscosity (SBV) and that at a low shear rate (5 s− 1) was recorded as diastolic blood viscosity (DBV). Systolic blood hyperviscosity was defined as > 13.0 cP at 300 s− 1 and diastolic blood hyperviscosity was defined as > 4.1 cP at 5 s− 1. Results The WBV and incidences of systolic and diastolic blood hyperviscosity significantly increased from the supine position without pneumoperitoneum to the STP with pneumoperitoneum. When RALP was performed in the STP with pneumoperitoneum, 12 patients (27.3%) who had normal SBV at the beginning of surgery and 11 patients (26.8%) who had normal DBV at the beginning of surgery developed new systolic and diastolic blood hyperviscosity, respectively. The degree of increase in WBV after positioning with the STP and pneumoperitoneum was higher in the patients with hyperviscosity than in those without hyperviscosity at the beginning of surgery. Higher preoperative body mass index (BMI) and hematocrit level were associated with the development of both systolic and diastolic blood hyperviscosity in the STP with pneumoperitoneum. All patients were postoperatively discharged without fatal complications. Conclusions Changes in surgical position may influence WBV, and higher preoperative BMI and hematocrit level are independent factors associated with the risk of hyperviscosity during RALP in the STP with pneumoperitoneum. Trial registration Clinical Research Information Service, Republic of Korea, approval number: KCT0003295 on October 25, 2018.


2019 ◽  
Vol 158 (01) ◽  
pp. 41-45
Author(s):  
Yiping Bai ◽  
Liqun Mo ◽  
Liming Luan ◽  
Daiying Zhang

Abstract Objective To test the hypothesis that patient-controlled analgesia (PCA) contributes to improvement of hemorheology in patients undergoing hip arthroplasty. Methods 120 patients, aged 60 – 75 years old, undergoing hip arthroplasty under spinal anesthesia, were randomly divided into group PCA (n = 60) and control group (n = 60). Patients in PCA group received PCA in postoperative 3 days. Blood samples from the median cubital vein were collected at five time points: before anesthesia (T1), after surgery (T2), 6 h after surgery (T3), 24 h after surgery (T4), 48 h after surgery (T5). Hemorheological parameters were measured, including whole blood viscosity at a high shear rate (Hηb), whole blood viscosity at a low shear rate (Lηb), reduced viscosity (ηr), plasma viscosity (ηp), hematocrit (Hct), erythrocyte aggregation index(EAI) and erythrocyte deformation index (EDI). Noninvasive blood pressure and heart rate at T1-5 and pain scoring of visual analogue scale (VAS) score at T2-5 were recorded. Results (1) Compared with T1, Hηb, Lηb, ηp, ηr decreased significantly at T3–5 with EAI decreased significantly at T5 in group PCA (p < 0.05), EDI increased significantly at T5 in group C (p < 0.05). (2) Compared with group C, Hηb, Lηb, ηp, ηr, EAI decreased significantly at T5 with Lηb concurrently decreased at T4 in group PCA (p < 0.05). Conclusion Postoperative pain may increase blood viscosity in patients undergoing hip arthroplasty, mainly via plasma viscosity, erythrocyte aggregation and rigidity, and which could be improved by postoperative PCA.


Sign in / Sign up

Export Citation Format

Share Document