Genetic characterization of G protein in respiratory syncytial virus ON-1 genotype in Tehran

2020 ◽  
Vol 15 (11) ◽  
pp. 725-734
Author(s):  
Somayeh Shatizadeh Malekshahi ◽  
Yazdan Samieipour ◽  
Ali Akbar Rahbarimanesh ◽  
Anahita Izadi ◽  
Nastaran Ghavami ◽  
...  

Aim: We investigated the genetic characterization of the respiratory syncytial virus (RSV) ON-1 genotypes and their different lineages based on the G gene among children <2 years of age presenting with acute respiratory tract infections in Tehran, Iran. Materials & methods: A phylogenetic tree from the Iranian samples and ON-1 strains of various parts of the world were constructed. The amino acid composition of the RSV G protein of the ON-1 genotype was mapped. Results: Human RSV ON-1 genotypes from the Iranian samples clustered in three lineages. The most common amino acid substitutions were as follows: X218Q, I240S, L289P, Y304H and L310P. Conclusion: Continuing molecular epidemiological surveys in other regions of Iran will provide deeper insight into the nature of this replacement of the dominant RSV genotype from GA2 to ON-1 in Iran.

Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 119
Author(s):  
Vera Krivitskaya ◽  
Kseniya Komissarova ◽  
Maria Pisareva ◽  
Maria Sverlova ◽  
Artem Fadeev ◽  
...  

Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of RSV G gene and G protein using St. Petersburg (Russia) isolates. Viruses were isolated in a cell culture from the clinical samples of 61 children hospitalized (January–April 2014) with laboratory-confirmed RSV infection. Real-time RT-PCR data showed that 56 isolates (91.8%) belonged to RSV-A and 5 isolates (8.2%) belonged to RSV-B. The G genes were sequenced for 27 RSV-A isolates and all of them belonged to genotype ON1/GA2. Of these RSV-A, 77.8% belonged to the ON1(1.1) genetic sub-cluster, and 14.8% belonged to the ON1(1.2) sub-cluster. The ON1(1.3) sub-cluster constituted a minor group (3.7%). Many single-amino acid substitutions were identified in the G proteins of St. Petersburg isolates, compared with the Canadian ON1/GA2 reference virus (ON67-1210A). Most of the amino acid replacements were found in immunodominant B- and T-cell antigenic determinants of G protein. These may affect the antigenic characteristics of RSV and influence the host antiviral immune response to currently circulating viruses.


2009 ◽  
Vol 5 (1) ◽  
pp. e1000254 ◽  
Author(s):  
Viviane F. Botosso ◽  
Paolo M. de A. Zanotto ◽  
Mirthes Ueda ◽  
Eurico Arruda ◽  
Alfredo E. Gilio ◽  
...  

2017 ◽  
Vol 91 (10) ◽  
Author(s):  
S. Boyoglu-Barnum ◽  
S. O. Todd ◽  
J. Meng ◽  
T. R. Barnum ◽  
T. Chirkova ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Through a CX3C chemokine motif (182CWAIC186) in the G protein, RSV binds to the corresponding chemokine receptor, CX3CR1. Since RSV binding to CX3CR1 contributes to disease pathogenesis, we investigated whether a mutation in the CX3C motif by insertion of an alanine, A186, within the CX3C motif, mutating it to CX4C (182CWAIAC187), which is known to block binding to CX3CR1, might decrease disease. We studied the effect of the CX4C mutation in two strains of RSV (A2 and r19F) in a mouse challenge model. We included RSV r19F because it induces mucus production and airway resistance, two manifestations of RSV infection in humans, in mice. Compared to wild-type (wt) virus, mice infected with CX4C had a 0.7 to 1.2 log10-fold lower virus titer in the lung at 5 days postinfection (p.i.) and had markedly reduced weight loss, pulmonary inflammatory cell infiltration, mucus production, and airway resistance after challenge. This decrease in disease was not dependent on decrease in virus replication but did correspond to a decrease in pulmonary Th2 and inflammatory cytokines. Mice infected with CX4C viruses also had higher antibody titers and a Th1-biased T cell memory response at 75 days p.i. These results suggest that the CX4C mutation in the G protein could improve the safety and efficacy of a live attenuated RSV vaccine. IMPORTANCE RSV binds to the corresponding chemokine receptor, CX3CR1, through a CX3C chemokine motif (182CWAIC186) in the G protein. RSV binding to CX3CR1 contributes to disease pathogenesis; therefore, we investigated whether a mutation in the CX3C motif by insertion of an alanine, A186, within the CX3C motif, mutating it to CX4C (182CWAIAC187), known to block binding to CX3CR1, might decrease disease. The effect of this mutation and treatment with the F(ab′)2 form of the anti-RSV G 131-2G monoclonal antibody (MAb) show that mutating the CX3C motif to CX4C blocks much of the disease and immune modulation associated with the G protein and should improve the safety and efficacy of a live attenuated RSV vaccine.


2015 ◽  
Vol 46 (5) ◽  
pp. 483-488 ◽  
Author(s):  
Wajihul Hasan Khan ◽  
V. L. N. Raghuram Srungaram ◽  
Asimul Islam ◽  
Ilyas Beg ◽  
Md. Shakir H. Haider ◽  
...  

2002 ◽  
Vol 76 (12) ◽  
pp. 6164-6171 ◽  
Author(s):  
Michael N. Teng ◽  
Peter L. Collins

ABSTRACT The G glycoprotein of human respiratory syncytial virus (RSV) was identified previously as the viral attachment protein. Although we and others recently showed that G is not essential for replication in vitro, it does affect the efficiency of replication in a cell type-dependent fashion and is required for efficient replication in vivo. The ectodomain of G is composed of two heavily glycosylated domains with mucin-like characteristics that are separated by a short central region that is relatively devoid of glycosylation sites. This central region contains a 13-amino acid segment that is conserved in the same form among RSV isolates and is overlapped by a second segment containing four cysteine residues whose spacings are conserved in the same form and which create a cystine noose. The conserved nature of the cystine noose and flanking 13-amino acid segment suggested that this region likely was important for attachment activity. To test this hypothesis, we constructed recombinant RSVs from which the region containing the cysteine residues was deleted together with part or all of the conserved 13-amino acid segment. Surprisingly, each deletion had little or no effect on the intracellular synthesis and processing of the G protein, the kinetics or efficiency of virus replication in vitro, or sensitivity to neutralization by soluble heparin in vitro. In addition, neither deletion had any discernible effect on the ability of RSV to infect the upper respiratory tract of mice and both resulted in a 3- to 10-fold reduction in the lower respiratory tract. Thus, although the G protein is necessary for efficient virus replication in vivo, this activity does not require the central conserved cystine noose region.


PEDIATRICS ◽  
2008 ◽  
Vol 121 (Supplement 2) ◽  
pp. S108.1-S108
Author(s):  
Qi Lu ◽  
Kunling Shen ◽  
Wenbo Xu ◽  
Yang Zhang ◽  
Zhen Zhu

Sign in / Sign up

Export Citation Format

Share Document