Combined paclitaxel-doxorubicin liposomal results in positive prognosis with infiltrating lymphocytes in lung metastasis

Nanomedicine ◽  
2020 ◽  
Author(s):  
Luiza Ianny de Lima ◽  
Raquel Santos Faria ◽  
Marina Santiago Franco ◽  
Marjorie Coimbra Roque ◽  
Thyago José Arruda Pacheco ◽  
...  

Aim: To investigate the effect of liposomes containing the classical cytotoxic drugs paclitaxel and doxorubicin (Lipo-Pacli/Dox), against a metastatic breast cancer model. We also investigated if Lipo-Pacli/Dox was capable of reverting the tolerogenic environment of metastatic lesions. Materials & methods: Immunogenic cell death induction by the Pacli/Dox combination was assessed in vitro. Antitumor activity and in vivo safety of Lipo-Pacli/Dox were evaluated using a 4T1 breast cancer mouse model Results: Lipo-Pacli/Dox, with a size of 189 nm and zeta potential of -5.01 mV, promoted immune system activation and partially controlled the progression of pulmonary metastasis. Conclusion: Lipo-Pacli/Dox was useful to control both primary tumor and lung metastasis in breast cancer (4T1) mice model. Additionally, Lipo-Pacli/Dox acts as an immunological modulator for this metastatic breast cancer model.

2013 ◽  
Vol 28 (11) ◽  
pp. 2357-2367 ◽  
Author(s):  
Maureen E Lynch ◽  
Daniel Brooks ◽  
Sunish Mohanan ◽  
Min Joon Lee ◽  
Praveen Polamraju ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e44433 ◽  
Author(s):  
Marion Helle ◽  
Elsa Cassette ◽  
Lina Bezdetnaya ◽  
Thomas Pons ◽  
Agnès Leroux ◽  
...  

2019 ◽  
Vol 3 (3) ◽  
pp. 255-265
Author(s):  
Heli Savolainen ◽  
Alessia Volpe ◽  
Alkystis Phinikaridou ◽  
Michael Douek ◽  
Gilbert Fruhwirth ◽  
...  

2004 ◽  
Vol 9 (6) ◽  
pp. 829-836 ◽  
Author(s):  
Margit Maria Janát-Amsbury ◽  
James W Yockman ◽  
Minhyung Lee ◽  
Steven Kern ◽  
Darin Y Furgeson ◽  
...  

2009 ◽  
Vol 120 (1) ◽  
pp. 253-260 ◽  
Author(s):  
Ramon C. Sun ◽  
Mitali Fadia ◽  
Jane E. Dahlstrom ◽  
Christopher R. Parish ◽  
Philip G. Board ◽  
...  

2010 ◽  
Author(s):  
Omar M. Rashid ◽  
Masayuki Nagahashi ◽  
Subramaniam Ramachandran ◽  
Sheldon Milstien ◽  
Sarah Spiegel ◽  
...  

BMC Medicine ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Sara Charmsaz ◽  
Ben Doherty ◽  
Sinéad Cocchiglia ◽  
Damir Varešlija ◽  
Attilio Marino ◽  
...  

Abstract Background Metastatic breast cancer is a major cause of cancer-related deaths in woman. Brain metastasis is a common and devastating site of relapse for several breast cancer molecular subtypes, including oestrogen receptor-positive disease, with life expectancy of less than a year. While efforts have been devoted to developing therapeutics for extra-cranial metastasis, drug penetration of blood–brain barrier (BBB) remains a major clinical challenge. Defining molecular alterations in breast cancer brain metastasis enables the identification of novel actionable targets. Methods Global transcriptomic analysis of matched primary and metastatic patient tumours (n = 35 patients, 70 tumour samples) identified a putative new actionable target for advanced breast cancer which was further validated in vivo and in breast cancer patient tumour tissue (n = 843 patients). A peptide mimetic of the target’s natural ligand was designed in silico and its efficacy assessed in in vitro, ex vivo and in vivo models of breast cancer metastasis. Results Bioinformatic analysis of over-represented pathways in metastatic breast cancer identified ADAM22 as a top ranked member of the ECM-related druggable genome specific to brain metastases. ADAM22 was validated as an actionable target in in vitro, ex vivo and in patient tumour tissue (n = 843 patients). A peptide mimetic of the ADAM22 ligand LGI1, LGI1MIM, was designed in silico. The efficacy of LGI1MIM and its ability to penetrate the BBB were assessed in vitro, ex vivo and in brain metastasis BBB 3D biometric biohybrid models, respectively. Treatment with LGI1MIM in vivo inhibited disease progression, in particular the development of brain metastasis. Conclusion ADAM22 expression in advanced breast cancer supports development of breast cancer brain metastasis. Targeting ADAM22 with a peptide mimetic LGI1MIM represents a new therapeutic option to treat metastatic brain disease.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 13510-13510
Author(s):  
S. E. Hahn ◽  
L. A. da Cruz ◽  
D. Sayegh ◽  
A. Ferry ◽  
K. O’Reilly ◽  
...  

13510 Background: CD44 (an adhesion molecule and stem cell antigen), CD59 (a complement-inhibitory molecule), MCSP (an adhesion and cell-cell interactions), and Trop-2 (EpCam a related signaling molecule) represent a group of biologically-significant cancer proteins acting through distinct mechanisms. We have described Abs with in vitro and in vivo cancer suppressive activity to this group of targets. However, their effectiveness depends on the phenotype of malignant cells; cell response should correlate with expression of its Ag, and tumor cells represent a heterogeneous group of non-synchronous cells. The present study describes the efficacy of those antibodies in breast cancer models and the prevalence of their antigen targets in a survey of human breast cancer tissues. Methods: In vivo activity of antibodies ARH460–16–2 (anti-CD44), AR36A36.11.1 (anti-CD59), AR11BD-2E11–2 (anti-MCSP), and AR47A6.4.2 (anti-Trop-2) in estrogen-dependent and hormone sensitive xenograft models of human breast cancer was examined. In addition, distribution of the antigens in breast cancer was determined by immunohistochemistry using tumor tissue arrays of breast cancer sections from distinct patients. Results: Treatment of an established breast cancer model with ARH460–16–2 resulted in 51% median tumor xenograft suppression (p<0.05), as well as increased survival in an MDA-MB-231 (breast cancer) grafted model. 63% of human breast cancer sections expressed the CD44 antigen. Treatment with anti-CD59 antibody AR36A36.11.1 resulted in 68% xenograft tumor suppression (p<0.005). AR47A6.4.2 anti-Trop-2 antibody bound to 100% of human breast cancer sections tested, and showed efficacy in the estrogen- dependent MCF-7 breast cancer model. Anti-MCSP antibody AR11BD-2E11–2 demonstrated 80% tumor growth inhibition (p<0.001), increased survival in an estrogen-dependent model of breast cancer, and was found to stain 62% of breast cancer tissues examined. Conclusions: The heterogeneity of breast cancer cell phenotypes in in vitro and in vivo studies and variable composite cellular antigen targets is the basis for the therapeutic use of multiple antibodies, each with independent mechanisms of action, and offers a rationale for combined antibody therapy in selected patients. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document