scholarly journals Development and application of spectrophotometric method for quantitative determination of Metronidazole in pure and tablet formulations

2016 ◽  
Vol 2 (1) ◽  
pp. 28 ◽  
Author(s):  
Zeeshan Masood ◽  
Muhammad Tayyab Ansari ◽  
Sharjeel Adnan ◽  
Muhammad Asad ◽  
Muhammad Farooq ◽  
...  

A rapid, simple and sensitive spectrophotometric method has been developed for the determination of metronidazole in pharmaceutical pure and dosage forms. The method depends on alkaline hydrolysis of metronidazole releases the nitro group as nitrite ion and yielded nitrite ions can be used to give a colored complex that absorbs maximally at 505 nm. Beer’s law is obeyed in the concentration ranges 9-100 mg/ml with molar absorptivity of 1.14 ×103 L mole-1 cm-1. The proposed method is precise, accurate and specific for the quantitative determination of drug in bulk and dosage forms. The results of analysis of commercial formulations and the recovery study of metronidazole suggested that there is no interference from any excipients, which are present in pharmaceutical formulations of metronidazole. Statistical comparison of the results was performed with regard to accuracy and precision using student’s t-test and F-ratio at 95% confidence level. There is no significant difference between the reported and proposed methods with regard to accuracy and precision.

2006 ◽  
Vol 71 (10) ◽  
pp. 1107-1120 ◽  
Author(s):  
Nafisur Rahman ◽  
Zehra Bano ◽  
Hejaz Azmi ◽  
Mohammad Kashif

Asimple kinetic spectrophotometric method has been developed for the determination of lansoprazole in pharmaceutical formulations. The method is based on the oxidation of the drug with alkaline potassium permanganate at room temperature. The reaction was followed spectrophotometrically by measuring the increase in the absorbance owing to the formation of MnO 42? at 610 nm (Method A) and the decrease in the absorbance at 530 nm due to the disapperance of MnO4? (Method B). Calibration procedures were adopted for the assay of the drug. The calibration curves were linear over the concentration ranges of 5-150 and 5-70?g ml-1, with the corresponding calibration Equations: rate = -3.915x10-6 + 5.271x10-5 c and ?A = 1.04x 10-3 + 1.78x10-3 c for methods A, and B, respectively. A statistical comparison of the results of the proposed procedures with those of the reference spectrophotometric method show excellent agreement and indicated no significant difference between the compared methods in terms of accuracy and precision. Interval hypothesis tests were also performed, which indicated that the true bias of all samples was less than ? 2 %. .


2010 ◽  
Vol 7 (2) ◽  
pp. 445-448 ◽  
Author(s):  
A. Lakshmana Rao ◽  
K. R. Rajeswari ◽  
G. G. Sankar

A simple, sensitive, highly accurate spectrophotometric method in UV region has been developed for the determination of nebivolol hydrochloride in bulk and pharmaceutical formulations. Nebivolol hydrochloride is an antihypertensive drug, which shows maximum absorbance at 281 nm with apparent molar absorptivity of 5.37208 × 103mol-1cm-1. Beer’s law was obeyed in the concentration range of 4-60 μg/mL. The slope, intercept and correlation coefficient were also calculated. The proposed method has been successfully used for the analysis of the drug in pure and its tablet dosage forms. Results of percentage recovery shows that the method was not affected by the presence of common excipients. The percentage assay of nebivolol hydrochloride was 98.75 and 99.02 respectively. The method was validated by sensitivity and precision which proves suitability of proposed method for the routine estimation of nebivolol in bulk and pharmaceutical formulations.


2001 ◽  
Vol 69 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Alaa Amin

A spectrophotometric method for the selective determination of paracetamol based on its reaction with pyrochatechol violet under basic conditions to form an ion-pair complex is described. The absorption maximum of the coloured ion-pair formed is observed at 652 nm and the molar absorptivity is 4.54 x10-3l mol-1 cm-1. Beer's law is obeyed over the concentration range 0.5-34.0 μg ml-1, while that obtained using Ringbom method is in the range 3.5 -32.0 μg ml-1. There is no interference from common additives, excipients and commercial drugs present in their formulations suggesting a highly selective procedure compared with others. Statistical analysis of the obtained results showed that there is, no significant difference and absence of any systematic error in the method compared with the official one. The method is simple, rapid and convenient and was applied successfully to the determination of paracetamol in pure and in its dosage forms compared with the official method.


2011 ◽  
Vol 2011 ◽  
pp. 1-8
Author(s):  
Nagaraju Rajendraprasad ◽  
Kanakapura Basavaiah ◽  
Kanakapura B. Vinay

Titrimetric and spectrophotometric methods are described for the determination of oxcarbazepine (OXC) in bulk drug and in tablets. The methods use N-bromosuccinimide (NBS) and bromopyrogallol red (BPR) as reagents. In titrimetry (method A), an acidified solution of OXC is titrated directly with NBS using methyl orange as indicator. Spectrophotometry (method B) involves the addition of known excess of NBS to an acidified solution of OXC followed by the determination of the unreacted NBS by reacting with BPR and measuring the absorbance of the unreacted dye at 460 nm. Titrimetry allows the determination of 6–18 mg of OXC and follows a reaction stoichiometry of 1 : 1 (OXC : NBS), whereas spectrophotometry is applicable over the concentration range of 0.8–8.0 μg mL-1. Method B with a calculated molar absorptivity of2.52×104 L mol-1 cm-1is the most sensitive spectrophotometric method ever developed for OXC. The optical characteristics such as limits of detection (LOD), quantification (LOQ), and Sandell's sensitivity values are also reported for the spectrophotometric method. The accuracy and precision of the methods were studied on intraday and interday basis. The methods described could usefully be applied to routine quality control of tablets containing OXC. No interference was observed from common pharmaceutical adjuvants. Statistical comparison of the results with a reference method shows an excellent agreement and indicates no significant difference in accuracy and precision. The reliability of the methods was further ascertained by recovery studies in standard addition procedure.


2010 ◽  
Vol 7 (3) ◽  
pp. 785-788 ◽  
Author(s):  
Mohammad Yunoos ◽  
D. Gowri Sankar ◽  
B. Pragati Kumar ◽  
Shahul Hameed ◽  
Azmath Hussain

A new, simple and sensitive spectrophotometric method in ultraviolet region has been developed for the determination of duloxetine hydrochloride in bulk and in pharmaceutical formulations. Duloxetine hydrochloride exhibits absorption maxima at 288 nm with apparent molar absorptivity of 0.97x104L/mol.cm in 0.1 N HCL. Beer's law was found to be obeyed in the concentration range of 5-30 μg/mL. The method is accurate, precise and economical. The proposed method has been applied successfully for the analysis of the drug in pure and in its capsule dosage forms. In this method, there is no interference from any common pharmaceutical additives and diluents. Results of the analysis were validated statistically and by recovery studies.


2012 ◽  
Vol 9 (2) ◽  
pp. 700-704 ◽  
Author(s):  
A. Narendra ◽  
D. Deepika ◽  
M. Mathrusri Annapurna

A new, simple and sensitive spectrophotometric method in ultraviolet region has been developed for the determination of Bosentan in bulk and in pharmaceutical formulations. Bosentan exhibits absorption maxima at 273 nm with apparent molar absorptivity of 1.3293×104L/mol.cm in methanol and octane 1-sulfonic acid solvent mixture. Beer's law was found to be obeyed in the concentration range of 0.1-100 μg/mL. The method was validated as per the ICH guidelines.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Patrícia Vidal de Aléssio ◽  
Ana Carolina Kogawa ◽  
Hérida Regina Nunes Salgado

Ceftriaxone sodium, an antimicrobial agent that plays an important role in clinical practice, is successfully used to treat infections caused by most Gram-positive and Gram-negative organisms. Since there are few rapid analytical methods for ceftriaxone analysis to use in the pharmaceutical routine, the aim of this research was to develop a new method able to quantify this cephalosporin. Therefore, a sensitive, rapid, simple UV spectrophotometric method for the determination and quantification of ceftriaxone sodium was proposed. The UV detector was set at 241 nm. Beer’s law obeyed the concentration range of 10–20 µg mL−1. Statistical comparison of the results with a well-established reported method showed excellent agreement and proved that there is no significant difference in the accuracy and precision. Intra- and interday variability for the method were less than 2% relative standard deviation. The proposed method was applied to the determination of the examined drugs in pharmaceutical formulations and the results demonstrated that the method is equally accurate, precise, and reproducible as the official methods.


Author(s):  
RUAA MUAYAD MAHMOOD ◽  
HAMSA MUNAM YASSEN ◽  
SAMAR , NAJWA ISSAC ABDULLA AHMED DARWEESH ◽  
NAJWA ISSAC ABDULLA

Simple, rapid and sensitive extractive spectrophotometric method is presented for the determination of glibenclamide (Glb) based on the formation of ion-pair complex between the Glb and anionic dye, methyl orange (MO) at pH 4. The yellow colored complex formed was quantitatively extracted into dichloromethane and measured at 426 nm. The colored product obeyed Beer’s law in the concentration range of (0.5-40) μg.ml-1. The value of molar absorptivity obtained from Beer’s data was found to be 31122 L.mol-1.cm-1, Sandell’s sensitivity value was calculated to be 0.0159 μg.cm-2, while the limits of detection (LOD) and quantification (LOQ) were found to be 0.1086 and 0.3292 μg.ml-1, respectively. The stoichiometry of the complex created between the Glb and MO was 1:1 as determined via Job’s method of continuous variation and mole ratio method. The method was successfully applied for the analysis of pharmaceutical formulation.


Author(s):  
Sagar Suman Panda ◽  
Ravi Kumar B V V ◽  
D Patanaik

A simple, precise and accurate spectrophotometric method was developed for analysis of the osteoporesis drug alendronate sodium (ALS). The method is based on reaction of the drug with sodium-1,2-naphthoquinone-4-sulphonate (NQS) in presence of alkali to form a brown colored complex giving absorption maximum at 525 nm. The drug obeyed Beer’s law in the range of 5-70 µg/ml with a correlation coefficient of 0.999. The LOD and LOQ values are 1.7 µg/ml and 5.0 µg/ml, respectively. The average recoveries for recovery study were found to be in the range of 99.37%-100.46%. The R.S.D. values for intraday and inter-day precision were found to be 0.48 and 0.62, respectively. The optimized assay conditions were applied successfully for determination of ALS in pharmaceutical dosage forms. No interference was observed from the excipients present in the dosage form. The method is statistically validated as per the ICH requirements.  


Author(s):  
Nesma M Fahmy ◽  
Adel M Michael

Abstract Background Modern built-in spectrophotometer software supporting mathematical processes provided a solution for increasing selectivity for multicomponent mixtures. Objective Simultaneous spectrophotometric determination of the three naturally occurring antioxidants—rutin(RUT), hesperidin(HES), and ascorbic acid(ASC)—in bulk forms and combined pharmaceutical formulation. Method This was achieved by factorized zero order method (FZM), factorized derivative method (FD1M), and factorized derivative ratio method (FDRM), coupled with spectrum subtraction(SS). Results Mathematical filtration techniques allowed each component to be obtained separately in either its zero, first, or derivative ratio form, allowing the resolution of spectra typical to the pure components present in Vitamin C Forte® tablets. The proposed methods were applied over a concentration range of 2–50, 2–30, and 10–100 µg/mL for RUT, HES, and ASC, respectively. Conclusions Recent methods for the analysis of binary mixtures, FZM and FD1M, were successfully applied for the analysis of ternary mixtures and compared to the novel FDRM. All were revealed to be specific and sensitive with successful application on pharmaceutical formulations. Validation parameters were evaluated in accordance with the International Conference on Harmonization guidelines. Statistical results were satisfactory, revealing no significant difference regarding accuracy and precision. Highlights Factorized methods enabled the resolution of spectra identical to those of pure drugs present in mixtures. Overlapped spectra of ternary mixtures could be resolved by spectrum subtraction coupled FDRM (SS-FDRM) or by successive application of FZM and FD1M.


Sign in / Sign up

Export Citation Format

Share Document