scholarly journals New Spectrophotometric Method for the Determination of Bosentan - An Anti-Hypertensive Agent in Pharmaceutical Dosage Forms

2012 ◽  
Vol 9 (2) ◽  
pp. 700-704 ◽  
Author(s):  
A. Narendra ◽  
D. Deepika ◽  
M. Mathrusri Annapurna

A new, simple and sensitive spectrophotometric method in ultraviolet region has been developed for the determination of Bosentan in bulk and in pharmaceutical formulations. Bosentan exhibits absorption maxima at 273 nm with apparent molar absorptivity of 1.3293×104L/mol.cm in methanol and octane 1-sulfonic acid solvent mixture. Beer's law was found to be obeyed in the concentration range of 0.1-100 μg/mL. The method was validated as per the ICH guidelines.

2010 ◽  
Vol 7 (3) ◽  
pp. 785-788 ◽  
Author(s):  
Mohammad Yunoos ◽  
D. Gowri Sankar ◽  
B. Pragati Kumar ◽  
Shahul Hameed ◽  
Azmath Hussain

A new, simple and sensitive spectrophotometric method in ultraviolet region has been developed for the determination of duloxetine hydrochloride in bulk and in pharmaceutical formulations. Duloxetine hydrochloride exhibits absorption maxima at 288 nm with apparent molar absorptivity of 0.97x104L/mol.cm in 0.1 N HCL. Beer's law was found to be obeyed in the concentration range of 5-30 μg/mL. The method is accurate, precise and economical. The proposed method has been applied successfully for the analysis of the drug in pure and in its capsule dosage forms. In this method, there is no interference from any common pharmaceutical additives and diluents. Results of the analysis were validated statistically and by recovery studies.


Author(s):  
Hind Hadi ◽  
Mariam Jamal

Abstract A sensitive, precise and reliable indirect spectrophotometric method for the determination of chlordiazepoxide (CDE) in pure and pharmaceutical dosage forms is described. The method is based on oxidative coupling reaction between amino group resulting from acidic decomposition of CDE with phenothiazine in the presence of sodium periodate to produce an intense green soluble dye that is stable and shows a maximum absorption at 602 nm. The calibration plot indicates that Beer’s law is obeyed over the concentration range of 0.1?50 µg/mL, with a molar absorptivity of 1×104 L/mol cm and correlation coefficient of 0.9994.All the conditions that affecting on the stability and sensitivity of the formed product were studied and optimized and the suggested method was effectively applied for the determination of CDE in commercial dosage forms.


Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


2015 ◽  
Vol 12 (2) ◽  
pp. 171-179 ◽  
Author(s):  
Nahid Sharmin ◽  
Nazia Sultana Shanta ◽  
Sitesh C Bachar

A simple, reliable, precise and sensitive UV-spectrophotometric method was developed and validated for the estimation of azithromycin in pharmaceutical dosage form and compared with official USP 2010 method. The proposed method utilizes the oxidation of azithromycin with potassium permanganate to liberate formaldehyde. This formaldehyde reacts with acetone-ammonium reagent and produces yellow colored chromogen 3,5-diacetyl-2,6-dihydrolutidine. The colored solution exhibited a maximum absorption at 412 nm which can be detected with UVspectrophotometer. The method was found linear over the concentration range 80% to 120% of the working concentration (R2=0.999). The intra- and inter-day RSD (n = 6) was ? 2.0%. The developed method was validated according to ICH guidelines and values of accuracy, precision and other statistical analysis were found to be in good accordance with the prescribed values. The proposed method was successfully applied for determination of azithromycin and the results have been compared with HPLC and thus enabling the utility of this new method for routine analysis azithromycin in pharmaceutical dosage forms DOI: http://dx.doi.org/10.3329/dujps.v12i2.21981 Dhaka Univ. J. Pharm. Sci. 12(2): 171-179, 2013 (December)


2016 ◽  
Vol 2 (1) ◽  
pp. 28 ◽  
Author(s):  
Zeeshan Masood ◽  
Muhammad Tayyab Ansari ◽  
Sharjeel Adnan ◽  
Muhammad Asad ◽  
Muhammad Farooq ◽  
...  

A rapid, simple and sensitive spectrophotometric method has been developed for the determination of metronidazole in pharmaceutical pure and dosage forms. The method depends on alkaline hydrolysis of metronidazole releases the nitro group as nitrite ion and yielded nitrite ions can be used to give a colored complex that absorbs maximally at 505 nm. Beer’s law is obeyed in the concentration ranges 9-100 mg/ml with molar absorptivity of 1.14 ×103 L mole-1 cm-1. The proposed method is precise, accurate and specific for the quantitative determination of drug in bulk and dosage forms. The results of analysis of commercial formulations and the recovery study of metronidazole suggested that there is no interference from any excipients, which are present in pharmaceutical formulations of metronidazole. Statistical comparison of the results was performed with regard to accuracy and precision using student’s t-test and F-ratio at 95% confidence level. There is no significant difference between the reported and proposed methods with regard to accuracy and precision.


2020 ◽  
pp. 1-4
Author(s):  
Mahmoud Mohammed Mohammed Sebaay ◽  
Amr A. Mattar ◽  
Mahmoud Mohammed Mohammed Sebaay

A simple, specific, accurate and precise spectrophotometric method was settled for simultaneous determination of paracetamol and orphenadrine citrate in their pure form and in their pharmaceutical formulation. Isoabsorptive point technique has been used in simultaneous determination of both drugs without prior separation. Isoabsorptive point method parameters were validated according to ICH guidelines in which accuracy, precision, repeatability and robustness were found in accepted limits. Advantages and disadvantages of Isoabsorptive point were discussed and statistical comparison between the proposed method and the reference one was also performed.


2009 ◽  
Vol 6 (1) ◽  
pp. 89-92 ◽  
Author(s):  
Alka Gupta ◽  
P. Mishra ◽  
K. Shah

A new, simple and sensitive spectrophotometric method in ultraviolet region has been developed for the determination of rosuvastatin calcium in bulk and in pharmaceutical formulations. Rosuvastatin exhibits absorption maxima at 244 nm with apparent molar absorptivity of 7.2345 ×104L/mol.cm in methanol. Beer’s law was found to be obeyed in the concentration range of 2-18 µg/mL. The method is accurate, precise and economical. This method is extended to pharmaceutical preparations. In this method, there is no interference from any common pharmaceutical additives and diluents. Results of the analysis were validated statistically and by recovery studies


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Michael E. El-Kommos ◽  
Samia M. El-Gizawy ◽  
Noha N. Atia ◽  
Noha M. Hosny

A simple and sensitive spectrophotometric method has been developed for the determination of cetirizine (I), ebastine (II), fexofenadine (III), ketotifen (IV), and loratadine (V) based on ion-pair complex formation with erythrosine B. The pink color of the produced complex was measured at 550 nm without solvent extraction. Appropriate conditions were established by studying the color reaction between erythrosine B and the studied drugs to obtain the maximum sensitivity. Beer-Lambert's law is obeyed in the concentration ranges 1–7, 1–8, and 1–6 g/mL for (I, IV), (II, III), and (V), respectively. The method was validated according to ICH guidelines. The suggested method is applicable for the determination of the five investigated drugs in bulk and pharmaceutical dosage forms with excellent recoveries.


2010 ◽  
Vol 7 (2) ◽  
pp. 445-448 ◽  
Author(s):  
A. Lakshmana Rao ◽  
K. R. Rajeswari ◽  
G. G. Sankar

A simple, sensitive, highly accurate spectrophotometric method in UV region has been developed for the determination of nebivolol hydrochloride in bulk and pharmaceutical formulations. Nebivolol hydrochloride is an antihypertensive drug, which shows maximum absorbance at 281 nm with apparent molar absorptivity of 5.37208 × 103mol-1cm-1. Beer’s law was obeyed in the concentration range of 4-60 μg/mL. The slope, intercept and correlation coefficient were also calculated. The proposed method has been successfully used for the analysis of the drug in pure and its tablet dosage forms. Results of percentage recovery shows that the method was not affected by the presence of common excipients. The percentage assay of nebivolol hydrochloride was 98.75 and 99.02 respectively. The method was validated by sensitivity and precision which proves suitability of proposed method for the routine estimation of nebivolol in bulk and pharmaceutical formulations.


2001 ◽  
Vol 69 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Alaa Amin

A spectrophotometric method for the selective determination of paracetamol based on its reaction with pyrochatechol violet under basic conditions to form an ion-pair complex is described. The absorption maximum of the coloured ion-pair formed is observed at 652 nm and the molar absorptivity is 4.54 x10-3l mol-1 cm-1. Beer's law is obeyed over the concentration range 0.5-34.0 μg ml-1, while that obtained using Ringbom method is in the range 3.5 -32.0 μg ml-1. There is no interference from common additives, excipients and commercial drugs present in their formulations suggesting a highly selective procedure compared with others. Statistical analysis of the obtained results showed that there is, no significant difference and absence of any systematic error in the method compared with the official one. The method is simple, rapid and convenient and was applied successfully to the determination of paracetamol in pure and in its dosage forms compared with the official method.


Sign in / Sign up

Export Citation Format

Share Document