scholarly journals Mathematical modelling of the thin layer drying of pineapple (Ananas comosus, L.): experiment at village-scale in a greenhouse type solar dryer

2019 ◽  
Vol 20 (2) ◽  
pp. 1-10
Author(s):  
Ignacio López Cerino ◽  
Irineo Lorenzo López Cruz ◽  
Serm Janjai ◽  
Marcus Nagle ◽  
Busarakorn Mahayothee ◽  
...  

The objectives of this research were two: first to investigate experimentally the behavior of pineappl (Ananas comosus, L.) thin layer drying in a greenhouse-type solar dryer and second to describe the best fitting kinetic and mathematical model taken from literature. A large scale greenhouse dryer designed and installed at Silpakorn University, Nakhon Pathom, Thailand was used to dry slices 1 cm width at temperature range between 25-60 °C with relative humidity between 50-90%. Nine statistical models, either empirical or semi-empirical, were tested in order to validate the experimental data. A non-linear regression analysis conducted by a statistical computer program was applied to evaluate the constants of all the models. The parameter values, root mean square error (RMSE), mean absolute error (MAE) and modelling efficiency (EFF) of the nine models were calculated. Comparison outcomes of two experiments are displayed between the predicted moisture content and the observed pineapple moisture content. Hasibuan and Daud drying model proved to describe the best pineapple solar drying curves. The two experiments were carried out on sunny days, the second experiment on the third day showed cloudiness decreasing the solar radiation. Mathematical models of pineapple drying in a greenhouse dryer have not been found so far in the literature. Drying curves obtained from experiments showed that the constant drying and the falling drying rate periods exist. Nine thin-layer drying models were fitted to two experimental data in order to describe the drying characteristics of pineapple founding that the Hasibuan and Daud model was the best fitting.

2019 ◽  
Vol 20 (2) ◽  
pp. 1-10
Author(s):  
Ignacio López Cerino ◽  
Irineo Lorenzo López Cruz ◽  
Serm Janjai ◽  
Marcus Nagle ◽  
Busarakorn Mahayothee ◽  
...  

The objectives of this research were two: first to investigate experimentally the behavior of pineappl (Ananas comosus, L.) thin layer drying in a greenhouse-type solar dryer and second to describe the best fitting kinetic and mathematical model taken from literature. A large scale greenhouse dryer designed and installed at Silpakorn University, Nakhon Pathom, Thailand was used to dry slices 1 cm width at temperature range between 25-60 °C with relative humidity between 50-90%. Nine statistical models, either empirical or semi-empirical, were tested in order to validate the experimental data. A non-linear regression analysis conducted by a statistical computer program was applied to evaluate the constants of all the models. The parameter values, root mean square error (RMSE), mean absolute error (MAE) and modelling efficiency (EFF) of the nine models were calculated. Comparison outcomes of two experiments are displayed between the predicted moisture content and the observed pineapple moisture content. Hasibuan and Daud drying model proved to describe the best pineapple solar drying curves. The two experiments were carried out on sunny days, the second experiment on the third day showed cloudiness decreasing the solar radiation. Mathematical models of pineapple drying in a greenhouse dryer have not been found so far in the literature. Drying curves obtained from experiments showed that the constant drying and the falling drying rate periods exist. Nine thin-layer drying models were fitted to two experimental data in order to describe the drying characteristics of pineapple founding that the Hasibuan and Daud model was the best fitting.


2012 ◽  
Vol 11 (2) ◽  
pp. 22 ◽  
Author(s):  
Oraporn Bualuang ◽  
Supawan Tirawanichakul ◽  
Yutthana Tirawanichakul

This research was to investigate some thermo-physical properties and to determine a mathematical model for describing drying kinetics for medium and long grain parboiled rice varieties. The thermo-physical properties in terms of equilibrium moisture content (EMC), apparent density, void fraction, specific heat capacity at moisture content ranging from 30 to 58% dry-basis (d.b.) for both Leb Nok Pattani (LNP) and Suphanburi 1 (SP 1) rice varieties were determined by conventional standard techniques.The evaluated results showed that EMC values for both rice varieties predicted by the GAB’s model yielded the best fitting with experimental data. To determine thermo-physical properties, the results stated that apparent density and specific heat capacity of parboiled LNP and SP1 rice varieties were linearly dependent on moisture content. In contrast, percentage of void fraction of medium grain LNP and long grain SP1 rice variety was inversely proportional to moisture content. For employing empirical thin-layer drying models, the Two terms model was the best fitting model to describe the experimental data for both rice varieties.


Author(s):  
MILTON CANO-CHAUCA ◽  
AFONSO M. RAMOS ◽  
PAULO C. STRINGHETA ◽  
JOSÉ ANTONIO MARQUES ◽  
POLLYANNA IBRAHIM SILVA

Curvas de secagem de banana passa foram determinadas, utilizando-se três temperaturas do ar de secagem. Os resultados indicaram que para reduzir o teor de umidade do produto até 23,5% foram necessários tempos de secagem de 51, 36 e 30 horas paras as temperaturas de 50, 60 e 70ºC, respectivamente. O modelo exponencial U/Uo = exp(-kt) foi ajustado para os dados experimentais mediante análise de regressão não-linear, encontrandose alto coeficiente de regressão linear. Determinou-se a atividade de água do produto ao longo do processo de secagem para as três temperaturas testadas. Estudou-se a correlação entre a atividade de água e o teor de umidade do produto, determinando-se as isotermas de dessorção da banana passa a 25ºC. Observou-se que a atividade de água diminuiu em função do tempo de secagem e do teor de umidade para as três temperaturas de secagem. Os dados experimentais foram ajustados mediante regressão não-linear ao modelo polinomial e a seguinte equação foi obtida: U = -1844,93 + 7293,53Aa – 9515,52Aa2 + 4157,196Aa3. O ajuste mostrou-se satisfatório (R2 > 0,90). DRYING CURVES AND WATER ACTIVITY EVALUATION OF THE BANANA-PASSES Abstract Banana drying curves were determined by utilizing three drying air temperatures. The results indicated that to reduce the moisture content of the product until 23.5% it were necessary drying times of 51, 36 and 30 hours for temperatures of 50, 60 and 70ºC, respectively. The exponential model U/Uo = exp(-kt) was adjusted for the experimental data by means of non linear regression analysis, and a high coefficient of linear regression was found. The water activity of the product was determined throughout the drying process for the three tested temperatures. The correlation between the water activity and moisture content of the product was studied, and the sorption isotherms were determined at 25º C. It was observed that the water activity decreased in function to the drying time and moisture content for the three drying temperatures. The experimental data were adjusted by means of non linear regression to the polynomial model and the following equation was obtained: U = - 1844.93 + 7293.53A a – 9515.52 Aa 2 + 4157.196A a 3. The final adjust was satisfactory (R2 > 0.90).


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Akinjide A Akinola ◽  
Stanley N. Ezeorah

 This study aims to investigate the drying characteristics of cassava, yam, and potato slices using a laboratory scale batch Refractance Window™ (RW) dryer. The experimental dryer was constructed by modifying a laboratory water bath. The bath was covered with a transparent Polyethylene terephthalate (PET) plastic film held in-place with angled edges. The cassava, yam, and potato slices were dried on the Refractance WindowTM dryer, and the variation of the moisture content of the slices during the drying process was measured. The water temperature beneath the plastic film was maintained at 60oC. The dehydration data were fitted to thin-layer drying models. Regression analysis suggested that the Haghi and Ghanadzadeh model best describes the dehydration behaviour for the 3 mm thick slices for the cassava, yam, and potato tubers. The coefficient of determination (R2) values of 0.999, 0.998, and 0.998 for the cassava, yam, and potato slices respectively were reported in all the models studied. The drying curves, the drying rate curves, and the Krischer curves, from the experimental drying data, was plotted. Observations indicate that the cassava, yams, and potatoes slices dried to below 0.11 g water/g-solid moisture content in about 150 min. This study was performed to facilitate the understanding of the design, modelling, and operations of a continuously operating RW dryer. Keywords: Refractance Window Drying, Thin Layer Drying Models, Yams, Cassava, Potatoes.


2016 ◽  
Vol 7 (5) ◽  
pp. 749-756
Author(s):  
Aduke N. Rhoda ◽  
Isaac N. Simate

The aim of this study was to carry out an experimental investigation on drying fresh Kapenta in a Greenhouse Solar Dryer and to evaluate a suitable thin-layer drying model for the Kapenta. The nutritional constituents and quality of the Kapenta dried from the Greenhouse solar dryer and the open sun were also examined. To determine thin-layer drying characteristics of fresh Kapenta, drying in a hot air dryer at different air temperatures was carried out. The influence of the drying temperature (35, 45, 55 °C) on the moisture ratio and drying rate has been studied in this paper. The experimental drying data of Kapenta under different temperatures was fitted to three different thin-layer drying models by using non-linear least squares regression analysis in Excel, and the models compared according to three statistical parameters; coefficient of correlation, the reduced chi-square and the root mean square error. The coefficient of correlation values of Page were higher (0.980361- 0.997000), compared to the other models, indicating that the Page model was the best to describe drying curves of fresh Kapenta among the three models


2018 ◽  
Vol 12 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Kamil Neyfel Çerçi ◽  
Özge Sufer

In this study, the dehydration behavior of zucchini using solar assisted drying system was examined according to 22 thin layer drying models available in literature. The correlation coefficient (R2), chi-square (χ2) and root mean square error (RMSE) values were calculated to check the suitability of models by non-linear regression analysis. It was found that Cubic and Modified Midilli-1 models were the most suitable equations and their R2 values were calculated as 0.99963. χ2 and RMSE values of related mathematical expressions were 1.89343×10‒5, 1.91692×10‒5 and 0.01685×10‒3, 0.01721×10‒3 respectively. In addition, heat transfer, mass transfer and diffusion coefficients, which were important parameters in design of drying systems were also determined as 5.18124 W/m2°C, 1.57129×10‒7 m/s and 2.335718×10‒9 m2/s respectively.


2012 ◽  
Vol 192 ◽  
pp. 51-56
Author(s):  
Zhi Qiang Guan ◽  
Xiu Zhi Wang ◽  
Min Li ◽  
Xiao Qiang Jiang

A drying experiment of litchi pulp was done with a self-built heat-pump drying system. A few commonly-used thin-layer drying models for foods were linearized and fitted with the drying experimental data to select a relatively optimal model of depicting the relationship between moisture ratio and drying time of the heat-pump drying of litchi pulp. It was found that the Page model is relatively optimal. The multivariate linear regression approach was employed to solve for the parameters of the Page model based on experimental data and an experimental verification was conducted; the verification results show that the predicted values of the Page model have a good fitness with the measured values and thus the Page model can predict more accurately the moisture ratio and drying rate of litchi pulp in a heat-pump drying process.


2014 ◽  
Vol 4 (1) ◽  
pp. 174
Author(s):  
Bolaji O. T. ◽  
Olalusi A. P. ◽  
Adesina B. S.

<p>This paper presents thin layer modeling of <em>ogi</em> produced from yellow and white maize at varying soaking period and dried in the cabinet and oven at 50 ºC. The moisture decrease for cabinet dried o<em>gi</em> produced from white maize from 49.0 11.5%, 49.5 to 11.32%, 46.5 to 12.33% and 46.12.29%. The drying rate for both oven and cabinet dried <em>ogi</em> produced from yellow maize decreased from 4.6 to 0.0525 kg/min, 4.5 to 0.0513 kg/min, 4.35 to 0.049 kg/min and 4.4 to 0.047 kg/min while for oven dried <em>ogi</em> followed a similar trend. The experimental data obtained were fitted to five thin layer models: Newton, Page, Herderson and Pabis, Two term and Wingh and Singh models. The values obtained for <em>ogi</em> produced from white maize and dried in the cabinet and oven at 50 ºC for Newton model gave a lower R<sup>2</sup>, ?<sup>2</sup>, RMSE compared with respective values obtained from Page, Herderson and Pabis, two term, Wing and Singh models. The two terms model appear to be the best model among the five models used in this work and had higher R<sup>2</sup>, lower ?<sup>2</sup>, and RMSE. The <em>ogi</em> produced from yellow maize at varying soaking period of 24, 48, 72 and 96 hours and dried in cabinet dryer and fitted with two term showed model constants a, K<sub>0,</sub> b, K<sub>1</sub> 0.04315, 0.0388995, 0.919, 2.2 × 10<sup>-3</sup> while the R<sup>2</sup>, ?<sup>2 </sup>RMSE were 0.9933, 5.85 × 10<sup>-4</sup> and 4.85 × 10<sup>5 </sup>for <em>ogi</em> produced for 24 hours soaking, respectively. The soaking period does not seem to affect the moisture ratio and the thin layer drying model. However, the initial moisture and equipment seems to affect significantly.</p>


Sign in / Sign up

Export Citation Format

Share Document