scholarly journals Muscle insulin-like growth factor-I modulates murine craniofacial bone growth

2021 ◽  
Vol 42 ◽  
pp. 72-89
Author(s):  
HJ Kok ◽  
◽  
CN Crowder ◽  
L Koo Min Chee ◽  
HY Choi ◽  
...  

Insulin-like growth factor I (IGF-I) is essential for muscle and bone development and a primary mediator of growth hormone (GH) actions. While studies have elucidated the importance of IGF-I specifically in muscle or bone development, few studies to date have evaluated the relationship between muscle and bone modulated by IGF-I in vivo, during post-natal growth. Mice with muscle-specific IGF-I overexpression (mIgf1+/+) were utilised to determine IGF-I- and muscle-mass-dependent effects on craniofacial skeleton development during post-natal growth. mIgf1+/+ mice displayed accelerated craniofacial bone growth when compared to wild-type animals. Virus-mediated expression of IGF-I targeting the masseter was performed to determine if post-natal modulation of IGF-I altered mandibular structures. Increased IGF-I in the masseter affected the mandibular base plane angle in a lateral manner, increasing the width of the mandible. At the cellular level, increased muscle IGF-I also accelerated cartilage thickness in the mandibular condyle. Importantly, mandibular length changes associated with increased IGF-I were not present in mice with genetic inhibition of muscle IGF-I receptor activity. These results demonstrated that muscle IGF-I could indirectly affect craniofacial growth through IGF-I-dependent increases in muscle hypertrophy. These findings have clinical implications when considering IGF-I as a therapeutic strategy for craniofacial disorders.

1994 ◽  
Vol 131 (4) ◽  
pp. 405-412 ◽  
Author(s):  
Bronwyn A Crawford ◽  
David J Handelsman

Crawford BA, Handelsman DJ. Recombinant growth hormone and insulin-like growth factor I do not alter gonadotrophin stimulation of the baboon testis in vivo. Eur J Endocrinol 1994;131:405–12. ISSN 0804–4643 In vitro studies indicate a physiological role for insulin-like growth factor I (IGF-I) in paracrine regulation of testicular function and recent clinical studies suggest a potential role for growth hormone (GH) and/or IGF-I in the treatment of hypogonadotrophic states in males. This study aimed to examine the effects of pretreatment with recombinant human GH (rhGH) or rhIGF-I on the response to gonadotrophins of the non-human primate testis in vivo. Using a balanced Latin square design with repeated measures, six prepubertal male hamadryas baboons (Papio hamadryas hamadryas) were treated in a cross-over sequence for periods of 18 days with daily im injections of rhGH (0.4 IU·kg−1 · day−1), rhIGF-I (0.1 mg·kg−1 · day−1) or saline with a 2-week washout period between each treatment. A single im injection of hCG (1500 IU) increased serum testosterone (p = 0.0002) but neither rhGH nor rhIGF-I influenced the timing or magnitude of this response (p > 0.5). A single im dose of FSH (75 IU) stimulated immunoreactive inhibin (p = 0.01) but also was unaffected in magnitude or timing by pretreatment with rhGH or rhIGF-I (p> 0.2). Circulating IGF-I levels were increased independently by hCG (p = 0.01) and FSH (p < 0.0001) administration. These findings indicate that neither GH nor IGF-I pre-treatment enhance acute gonadal responses to gonadotrophin stimulation of the prepubertal non-human primate testis in vivo. These findings suggest that GH or IGF-I treatment of hypogonadotrophic men without somatotrophin deficiency is unlikely to be beneficial. David J Handelsman, Andrology Unit, Royal Prince Alfred Hospital, Departments of Medicine and Obstetrics and Gynaecology, University of Sydney, Sydney 2006, Australia


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2856-2861 ◽  
Author(s):  
Nie-Lin Ge ◽  
Stuart Rudikoff

Abstract Multiple myeloma (MM) is an invariably fatal disease that accounts for approximately 1% to 2% of all human cancers. Surprisingly little is known about the cellular pathways contributing to growth of these tumors. Although the cytokine interleukin-6 has been suggested to be the major stimulus for myeloma cell growth, the role of a second potential growth factor, insulin-like growth factor I (IGF-I), has been less clearly defined. The IGF-I signaling cascade in 8 MM cell lines was examined. In 7 of these, the IGF-I receptor (IGF-IR) was expressed and autophosphorylated in response to ligand. Downstream of IGF-IR, insulin receptor substrate 1 was phosphorylated, leading to the activation of phosphatidylinositol-3′-kinase (PI-3K). PI-3K, in turn, regulated 2 distinct pathways. The first included Akt and Bad, leading to an inhibition of apoptosis; the second included the mitogen-activated protein kinase (MAPK), resulting in proliferation. Biologic relevance of this pathway was demonstrated because in vitro IGF-I induced both an antiapoptotic and a proliferative effect. Importantly, in vivo administration of IGF-I in SCID mice inoculated with the OPM-2 line led to approximately twice the growth rate of tumor cells as in controls. These results suggest that IGF-I activates at least 2 pathways effecting myeloma cell growth and contributes significantly to expansion of these cells in vivo.


2014 ◽  
Vol 116 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Rie Harboe Nielsen ◽  
Lars Holm ◽  
Nikolaj Mølkjær Malmgaard-Clausen ◽  
Søren Reitelseder ◽  
Katja Maria Heinemeier ◽  
...  

Insulin-like growth factor-I (IGF-I) is known to be an anabolic factor in tendon, and the systemic levels are reduced with aging. However, it is uncertain how tendon fibroblasts are involved in tendon aging and how aging cells respond to IGF-I. The purpose of this study was to investigate the in vivo IGF-I stimulation of tendon protein synthesis in elderly compared with young men. We injected IGF-I in the patellar tendons of young ( n = 11, 20–30 yr of age) and old ( n = 11, 66–75 yr of age) men, and the acute fractional synthesis rate (FSR) of tendon protein was measured with the stable isotope technique and compared with the contralateral side (injected with saline as control). We found that tendons injected with IGF-I had significantly higher protein FSR compared with controls (old group: 0.018 ± 0.015 vs. 0.008 ± 0.008, young group: 0.016 ± 0.009 vs. 0.009 ± 0.006%/h, mean ± SE, P < 0.01). This increase in protein synthesis was seen in both young and old men, with no differences between age groups. The old group had markedly lower serum IGF-I levels compared with young (165 ± 17 vs. 281 ± 27 ng/ml, P < 0.01). In conclusion, local IGF-I stimulated tendon protein synthesis in both young and old men, despite lower systemic IGF-I levels in the old group. This could indicate that the changed phenotype in aging tendon is not caused by decreased fibroblast function.


Zygote ◽  
2011 ◽  
Vol 20 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Alexander V. Makarevich ◽  
Elena Kubovičová ◽  
Zdena Hegedušová ◽  
Juraj Pivko ◽  
František Louda

SummaryThe goal of this study was to examine the effect of insulin-like growth factor I (IGF-I; added during post-thaw culture (48 h)) on the preimplantation viability and quality of cryopreserved bovine in vivo recovered embryos. The morula stage embryos, non-surgically recovered from superovulated dairy cows of Czech Fleckvieh cattle breed, had previously been cryopreserved by a slow freezing technique and stored in liquid nitrogen since 1989–1990. Following thawing, the embryos were cultured for 48 h either alone (no IGF-I) or in the presence of IGF-I (10 or 100 ng/ml); non-cultured embryos served as a control. Thereafter, the embryos were analyzed for cleavage to the blastocyst stage, apoptosis (TUNEL), embryo cell number and quality of actin cytoskeleton. Following post-thaw culture 41% of embryos developed to advanced blastocysts. IGF-I increased this per cent and, at a higher dose, essentially reduced the per cent of degenerated embryos. In cultured embryos, IGF-I at both doses elevated the cell number compared with non-cultured embryos. However, in comparison with embryos cultured without IGF-I, only the higher IGF-I dose resulted in elevating the embryo cell number. The TUNEL index was significantly lowered by IGF-I treatment. Thawed embryos were mostly of the grade III actin type and fewer (12%) had grade II actin, whilst no grade I actin embryos were noted. The addition of IGF-I resulted in the appearance of grade I actin embryos (8.33 and 6.9% for 10 and 100 ng/ml, respectively). These observations indicate that the addition of IGF-I during post-thaw culture can improve the quality of bovine cryopreserved embryos.


1996 ◽  
Vol 23 (1) ◽  
pp. 19-24 ◽  
Author(s):  
E. Hodak ◽  
A.B. Gottlieb ◽  
S. Colen ◽  
M. Anzilotti ◽  
J.G. Krueger

2014 ◽  
Vol 306 (8) ◽  
pp. E965-E974 ◽  
Author(s):  
Becky K. Brisson ◽  
Janelle Spinazzola ◽  
SooHyun Park ◽  
Elisabeth R. Barton

Insulin-like growth factor I (IGF-I) is a protein that regulates and promotes growth in skeletal muscle. The IGF-I precursor polypeptide contains a COOH-terminal extension called the E-peptide. Alternative splicing in the rodent produces two isoforms, IA and IB, where the mature IGF-I in both isoforms is identical yet the E-peptides, EA and EB, share less than 50% homology. Recent in vitro studies show that the E-peptides can enhance IGF-I signaling, leading to increased myoblast cell proliferation and migration. To determine the significance of these actions in vivo and to evaluate if they are physiologically beneficial, EA and EB were expressed in murine skeletal muscle via viral vectors. The viral constructs ensured production of E-peptides without the influence of additional IGF-I through an inactivating mutation in mature IGF-I. E-peptide expression altered ERK1/2 and Akt phosphorylation and increased satellite cell proliferation. EB expression resulted in significant muscle hypertrophy that was IGF-I receptor dependent. However, the increased mass was associated with a loss of muscle strength. EA and EB have similar effects in skeletal muscle signaling and on satellite cells, but EB is more potent at increasing muscle mass. Although sustained EB expression may drive hypertrophy, there are significant physiological consequences for muscle.


Bone ◽  
1991 ◽  
Vol 12 (1) ◽  
pp. 21-26 ◽  
Author(s):  
E.M. Spencer ◽  
C.C. Liu ◽  
E.C.C. Si ◽  
G.A. Howard

2011 ◽  
Vol 286 (22) ◽  
pp. 19501-19510 ◽  
Author(s):  
Friedrich Metzger ◽  
Waseem Sajid ◽  
Stefanie Saenger ◽  
Christian Staudenmaier ◽  
Chris van der Poel ◽  
...  

Insulin-like growth factor I (IGF-I) has important anabolic and homeostatic functions in tissues like skeletal muscle, and a decline in circulating levels is linked with catabolic conditions. Whereas IGF-I therapies for musculoskeletal disorders have been postulated, dosing issues and disruptions of the homeostasis have so far precluded clinical application. We have developed a novel IGF-I variant by site-specific addition of polyethylene glycol (PEG) to lysine 68 (PEG-IGF-I). In vitro, this modification decreased the affinity for the IGF-I and insulin receptors, presumably through decreased association rates, and slowed down the association to IGF-I-binding proteins, selectively limiting fast but maintaining sustained anabolic activity. Desirable in vivo effects of PEG-IGF-I included increased half-life and recruitment of IGF-binding proteins, thereby reducing risk of hypoglycemia. PEG-IGF-I was equipotent to IGF-I in ameliorating contraction-induced muscle injury in vivo without affecting muscle metabolism as IGF-I did. The data provide an important step in understanding the differences of IGF-I and insulin receptor contribution to the in vivo activity of IGF-I. In addition, PEG-IGF-I presents an innovative concept for IGF-I therapy in diseases with indicated muscle dysfunction.


Sign in / Sign up

Export Citation Format

Share Document