scholarly journals Development of Banana Peel Powder as Organic Carrier based Bioformulation and Determination of its Plant Growth Promoting Efficacy in Rice Cr100g

Author(s):  
R.S. David Paul Raj ◽  
H. Agnes Preethy ◽  
K. Gilbert Ross Rex

Agriculture is the primary source of income for more than 50 % of the Indian population and the current challenge in the agricultural industry is the increased crop production with sustainable agricultural practices from the shrinking cropland area. Plant Growth Promoting Rhizobacteria (PGPR) has been used as a bio inoculants for increasing the crop yield and the effectiveness of PGPR as biofertilizers majorly depends on the selection of the best carrier material, proper formulation of microorganisms and mode of delivery of the formulation. So, the present study investigates the effect of PGPR bacterial strains isolated from the Siruvani forest region, Coimbatore, Tamil Nadu. We have tested the efficacy of these PGPR strains using both in vitro seed germination assay and in vivo pot culture studies in CR100G rice seeds. We have used the banana peel powder (Patent No: 202041010982) as a novel organic carrier material for the development of bioformulation, along with talc as an inorganic carrier material to perform the in vivo study. The results showed that the rice plants treated with banana peel powder based bioformulation gives the highest shoot length (15.78 cm) when compared to the control (10.48 cm) on the 14th day, 21st and 45th day of seed seeding. The grain yield also increased in the Non-Enriched Banana Single (NEBS) bacterium group (125%) when normalized with the control. Thus, our current study suggests that Banana peel powder could be the better approach to be used as an organic carrier material for the development of Biofertilizers in future.

2019 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Clara Vega ◽  
Miguel Rodríguez ◽  
Inmaculada Llamas ◽  
Victoria Béjar ◽  
Inmaculada Sampedro

Increasing world food demand together with soil erosion and indiscriminate use of chemical fertilization highlight the need to adopt sustainable crop production strategies. In this context, a combination of plant growth-promoting rhizobacteria (PGPR) and pathogen management represents a sustainable and efficient alternative. Though little studied, halophilic and halotolerant PGPR could be a beneficial plant growth promotion strategy for saline and non-saline soils. The virulence of many bacterial phytopathogens is regulated by quorum sensing (QS) systems. Quorum quenching (QQ) involves the enzymatic degradation of phytopathogen-generated signal molecules, mainly N-acyl homoserine lactones (AHLs). In this study, we investigate plant growth-promoting (PGP) activity and the capacity of the halotolerant bacterium Staphylococcus equorum strain EN21 to attenuate phytopathogens virulence through QQ. We used biopriming and in vivo tomato plant experiments to analyse the PGP activity of strain EN21. AHL inactivation was observed to reduce Pseudomonas syringae pv. tomato infections in tomato and Arabidopsis plants. Our study of Dickeya solani, Pectobacterium carotovorum subsp. carotovorum and Erwinia amylovora bacteria in potato tubers, carrots and pears, respectively, also demonstrated the effectiveness of QS interruption by EN21. Overall, this study highlights the potential of strain S. equorum EN21 in plant growth promotion and QQ-driven bacterial phytopathogen biocontrol.


2015 ◽  
Vol 42 (8) ◽  
pp. 770 ◽  
Author(s):  
Saqib Saleem Akhtar ◽  
Mathias Neumann Andersen ◽  
Muhammad Naveed ◽  
Zahir Ahmad Zahir ◽  
Fulai Liu

The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.


2021 ◽  
Vol 22 (22) ◽  
pp. 12245
Author(s):  
Manoj Kumar ◽  
Ved Prakash Giri ◽  
Shipra Pandey ◽  
Anmol Gupta ◽  
Manish Kumar Patel ◽  
...  

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.


2013 ◽  
Vol 172 (4) ◽  
pp. 1735-1746 ◽  
Author(s):  
Asma Ait-Kaki ◽  
Noreddine Kacem-Chaouche ◽  
Marc Ongena ◽  
Mounira Kara-Ali ◽  
Laid Dehimat ◽  
...  

Author(s):  
Sakshi Tewari ◽  
Naveen Kumar Arora

<p>Ten bacterial isolates were obtained from the rhizosphere of sunflower crop grown in the semi-arid region of west Kanpur.<br />Isolates were further characterized on the basis of morphological, biochemical and physiological characteristics<br />suggesting them to be the member of group fluorescent pseudomonas. Isolates were further monitored for plant growth<br />promoting traits including IAA, phosphate solubilization, siderophore, nitrogen fixation, HCN, chitinase and β-1-3<br />glucanase activity. Amongst all the isolates, PF17 displayed maximum PGP attributes hence it was selected for doing<br />further in vivo pot study taking sunflower as a test crop. Seed treatment with fluorescent pseudomonas PF17 brought<br />enhancement in root length, shoot length, dry weight and seed yield of sunflower crop in comparison to control (untreated<br />seeds). Hence it might be concluded from the study that fluorescent pseudomonas PF17 contains large number of PGP<br />attributes, and its application contributed in enhancement of sunflower growth leading to better yield. In addition, ability<br />to enhance growth of sunflower with the help of biological means appears to be of great ecological and economic<br />importance.</p>


Sign in / Sign up

Export Citation Format

Share Document