scholarly journals An Experimental Investigation on Concrete by Partial Replacement of Fine Aggregate with Stone Dust and Waste Foundry Sand

Author(s):  
Mahendra G. Solanki

This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7420
Author(s):  
Kalyana Chakravarthy Polichetty Raja ◽  
Ilango Thaniarasu ◽  
Mohamed Abdelghany Elkotb ◽  
Khalid Ansari ◽  
C Ahamed Saleel

The demand for natural aggregates (river sand) is increasing day by day, leading to the destruction of the environment, a burden that will be passed on to young people. Further, wastes from various industries are being dumped in landfills, which poses serious environmental problems. In order to ensure sustainability, both the issues mentioned above can be solved by utilizing industrial waste as aggregate replacement in the concrete construction industry. This research is done to find out the results using two substances viz., waste foundry sand (WFS) and coconut shell (CS) substitute for river sand and coarse aggregate. Many researchers have found the maximum benefits of substituted substances used in cement, which has material consistency. This current observation explores these strong waste properties of waste-infused concrete and cement, which experience shrinkage from drying out. The replacement levels for waste foundry sand were varied, between 10%, 20%, and 30%, and for CS, it was 10% and 20%. The experimental outcomes are evident for the strength, which increases by using WFS, whereas the strength decreases by increasing the CS level. The concrete that experiences shrinkage from drying out is included in the waste material, showing a higher magnitude of drying shrinkage than conventional concrete.


2019 ◽  
Vol 1 (6) ◽  
pp. 346-352
Author(s):  
Easwaran P ◽  
Kalaivani M ◽  
Ramesh S ◽  
Ranjith R

The management of solid industrial waste is of big global concern nowadays. The majority of industries are not interested in the treatment and safe disposal of industrial waste due to its high cost involvements, causing environmental and other ecological impacts. The disposal of waste foundry sand is of prime importance due to the big volume produced from the metal casting industries all over the world as well as the waste bottom ash produced from the thermal power plant. The possibility of substituting natural fine aggregate with industrial by-products such as bottom ash and foundry sand offers technical, economic and environmental advantages which are of greater importance in the present context of sustainability in construction sector. Concrete is the most important engineering material and the addition of some other material may change the properties of concrete. Studies have been carried out to investigate the possibility of utilizing the board range of material as partial replacement material for cement and aggregate in the production of concrete. Natural fine aggregate are becoming scarcity because of its huge utility in various constitution process the possibility of substituting natural fine aggregate with industrial by product such as waste foundry sand and bottom ash in concrete. This study investigate the effect of waste of bottom ash and foundry sand is equal quantities as partial replacement of fine aggregate in 0%, 20%, 30%, 40% on concrete properties such as compression strength and split tensile strength. This study also aims to encourage industries to start commercial production of concrete products using waste bottom ash and foundry sand.


Author(s):  
Ranjitham Mariyappan ◽  
Bharani Devi Sivalingam ◽  
Buvana Ramesh ◽  
Deepak Ramkumar

Sign in / Sign up

Export Citation Format

Share Document